# 泛函导数

## 定义

${\displaystyle F\colon M\rightarrow \mathbb {R} \quad {\mbox{or}}\quad F\colon M\rightarrow \mathbb {C} }$,

F泛函导数，记为${\displaystyle {\delta F}/{\delta \varphi }}$,是一个满足以下条件的分布

{\displaystyle {\begin{aligned}\left\langle {\frac {\delta F[\varphi (x)]}{\delta \varphi (x)}},f(x)\right\rangle &=\int {\frac {\delta F[\varphi (x)]}{\delta \varphi (x')}}f(x')dx'\\&=\lim _{\varepsilon \to 0}{\frac {F[\varphi (x)+\varepsilon f(x)]-F[\varphi (x)]}{\varepsilon }}\\&=\left.{\frac {d}{d\epsilon }}F[\varphi +\epsilon f]\right|_{\epsilon =0}.\end{aligned}}}

${\displaystyle \varphi }$一次变分 ${\displaystyle \delta \varphi }$ 代替 ${\displaystyle f}$ 就得到 ${\displaystyle F}$ 的一次变分 ${\displaystyle \delta F}$

${\displaystyle {\frac {\delta F[\varphi (x)]}{\delta \varphi (y)}}=\lim _{\varepsilon \to 0}{\frac {F[\varphi (x)+\varepsilon \delta (x-y)]-F[\varphi (x)]}{\varepsilon }}.}$

## 性質

${\displaystyle {\frac {\delta (\lambda F+\mu G)[\rho ]}{\delta \rho (x)}}=\lambda {\frac {\delta F[\rho ]}{\delta \rho (x)}}+\mu {\frac {\delta G[\rho ]}{\delta \rho (x)}},}$

• 積法則：[2]
${\displaystyle {\frac {\delta (FG)[\rho ]}{\delta \rho (x)}}={\frac {\delta F[\rho ]}{\delta \rho (x)}}G[\rho ]+F[\rho ]{\frac {\delta G[\rho ]}{\delta \rho (x)}}\,,}$
• 鏈式法則：
FG 為兩個泛函，則[3]
${\displaystyle \displaystyle {\frac {\delta F[G[\rho ]]}{\delta \rho (y)}}=\int dx{\frac {\delta F[G(\rho )]}{\delta G[\rho (x)]}}\ {\frac {\delta G[\rho ]}{\delta \rho (y)}}\ .}$

${\displaystyle \displaystyle {\frac {\delta F[g(\rho )]}{\delta \rho (y)}}={\frac {\delta F[g(\rho )]}{\delta g[\rho (x)]}}\ {\frac {dg(\rho )}{d\rho (y)}}\ .}$

## 泛函導數的求法

### 公式

${\displaystyle F[\rho ]=\int f({\boldsymbol {r}},\rho ({\boldsymbol {r}}),\nabla \rho ({\boldsymbol {r}}))\,d{\boldsymbol {r}},}$

{\displaystyle {\begin{aligned}\int {\frac {\delta F}{\delta \rho ({\boldsymbol {r}})}}\,\phi ({\boldsymbol {r}})\,d{\boldsymbol {r}}&=\left[{\frac {d}{d\varepsilon }}\int f({\boldsymbol {r}},\rho +\varepsilon \phi ,\nabla \rho +\varepsilon \nabla \phi )\,d{\boldsymbol {r}}\right]_{\varepsilon =0}\\&=\int \left({\frac {\partial f}{\partial \rho }}\,\phi +{\frac {\partial f}{\partial \nabla \rho }}\cdot \nabla \phi \right)d{\boldsymbol {r}}\\&=\int \left[{\frac {\partial f}{\partial \rho }}\,\phi +\nabla \cdot \left({\frac {\partial f}{\partial \nabla \rho }}\,\phi \right)-\left(\nabla \cdot {\frac {\partial f}{\partial \nabla \rho }}\right)\phi \right]d{\boldsymbol {r}}\\&=\int \left[{\frac {\partial f}{\partial \rho }}\,\phi -\left(\nabla \cdot {\frac {\partial f}{\partial \nabla \rho }}\right)\phi \right]d{\boldsymbol {r}}\\&=\int \left({\frac {\partial f}{\partial \rho }}-\nabla \cdot {\frac {\partial f}{\partial \nabla \rho }}\right)\phi ({\boldsymbol {r}})\ d{\boldsymbol {r}}\,.\end{aligned}}}

${\displaystyle {\frac {\delta F}{\delta \rho ({\boldsymbol {r}})}}={\frac {\partial f}{\partial \rho }}-\nabla \cdot {\frac {\partial f}{\partial \nabla \rho }}}$

${\displaystyle F[\rho ({\boldsymbol {r}})]=\int f({\boldsymbol {r}},\rho ({\boldsymbol {r}}),\nabla \rho ({\boldsymbol {r}}),\nabla ^{(2)}\rho ({\boldsymbol {r}}),\dots ,\nabla ^{(N)}\rho ({\boldsymbol {r}}))\,d{\boldsymbol {r}},}$

${\displaystyle \left[\nabla ^{(i)}\right]_{\alpha _{1}\alpha _{2}\cdots \alpha _{i}}={\frac {\partial ^{\,i}}{\partial r_{\alpha _{1}}\partial r_{\alpha _{2}}\cdots \partial r_{\alpha _{i}}}}\qquad \qquad {\text{where}}\quad \alpha _{1},\alpha _{2},\cdots ,\alpha _{i}=1,2,\cdots ,n\ .}$[Note 2]

{\displaystyle {\begin{aligned}{\frac {\delta F[\rho ]}{\delta \rho }}&{}={\frac {\partial f}{\partial \rho }}-\nabla \cdot {\frac {\partial f}{\partial (\nabla \rho )}}+\nabla ^{(2)}\cdot {\frac {\partial f}{\partial \left(\nabla ^{(2)}\rho \right)}}+\dots +(-1)^{N}\nabla ^{(N)}\cdot {\frac {\partial f}{\partial \left(\nabla ^{(N)}\rho \right)}}\\&{}={\frac {\partial f}{\partial \rho }}+\sum _{i=1}^{N}(-1)^{i}\nabla ^{(i)}\cdot {\frac {\partial f}{\partial \left(\nabla ^{(i)}\rho \right)}}\ .\end{aligned}}}

${\displaystyle \left[{\frac {\partial f}{\partial \left(\nabla ^{(i)}\rho \right)}}\right]_{\alpha _{1}\alpha _{2}\cdots \alpha _{i}}={\frac {\partial f}{\partial \rho _{\alpha _{1}\alpha _{2}\cdots \alpha _{i}}}}\qquad \qquad {\text{where}}\quad \rho _{\alpha _{1}\alpha _{2}\cdots \alpha _{i}}\equiv {\frac {\partial ^{\,i}\rho }{\partial r_{\alpha _{1}}\,\partial r_{\alpha _{2}}\cdots \partial r_{\alpha _{i}}}}\ ,}$

${\displaystyle \nabla ^{(i)}\cdot {\frac {\partial f}{\partial \left(\nabla ^{(i)}\rho \right)}}=\sum _{\alpha _{1},\alpha _{2},\cdots ,\alpha _{i}=1}^{n}\ {\frac {\partial ^{\,i}}{\partial r_{\alpha _{1}}\,\partial r_{\alpha _{2}}\cdots \partial r_{\alpha _{i}}}}\ {\frac {\partial f}{\partial \rho _{\alpha _{1}\alpha _{2}\cdots \alpha _{i}}}}\ .}$ [Note 3]

### 例子

#### 托马斯-费米动能泛函

1927年的对于无相互作用的单一电子雲使用了动能泛函是密度泛函理论关于电子结构的第一次尝试

${\displaystyle T_{\mathrm {TF} }[\rho ]=C_{\mathrm {F} }\int \rho ^{5/3}(\mathbf {r} )\,d\mathbf {r} .}$

${\displaystyle T_{\mathrm {TF} }[\rho ]}$ 只与电子密度有关 ${\displaystyle \rho (\mathbf {r} )}$ 并且不依赖于其梯度, Laplacian, 或者其他更高阶的微分 (像这样的泛函被称为是“局部的”). 因此，

${\displaystyle {\frac {\delta T_{\mathrm {TF} }[\rho ]}{\delta \rho }}=C_{\mathrm {F} }{\frac {\partial \rho ^{5/3}(\mathbf {r} )}{\partial \rho (\mathbf {r} )}}={\frac {5}{3}}C_{\mathrm {F} }\rho ^{2/3}(\mathbf {r} ).}$

#### 库仑势能泛函

${\displaystyle V[\rho ]=\int {\frac {\rho ({\boldsymbol {r}})}{|{\boldsymbol {r}}|}}\ d{\boldsymbol {r}}.}$

{\displaystyle {\begin{aligned}\int {\frac {\delta V}{\delta \rho ({\boldsymbol {r}})}}\ \phi ({\boldsymbol {r}})\ d{\boldsymbol {r}}&{}=\left[{\frac {d}{d\varepsilon }}\int {\frac {\rho ({\boldsymbol {r}})+\varepsilon \phi ({\boldsymbol {r}})}{|{\boldsymbol {r}}|}}\ d{\boldsymbol {r}}\right]_{\varepsilon =0}\\&{}=\int {\frac {1}{|{\boldsymbol {r}}|}}\,\phi ({\boldsymbol {r}})\ d{\boldsymbol {r}}\,.\end{aligned}}}

${\displaystyle {\frac {\delta V}{\delta \rho ({\boldsymbol {r}})}}={\frac {1}{|{\boldsymbol {r}}|}}\ .}$

${\displaystyle J[\rho ]={\frac {1}{2}}\iint {\frac {\rho (\mathbf {r} )\rho (\mathbf {r} ')}{\vert \mathbf {r} -\mathbf {r} '\vert }}\,d\mathbf {r} d\mathbf {r} '\,.}$

{\displaystyle {\begin{aligned}\int {\frac {\delta J}{\delta \rho ({\boldsymbol {r}})}}\phi ({\boldsymbol {r}})d{\boldsymbol {r}}&{}=\left[{\frac {d\ }{d\epsilon }}\,J[\rho +\epsilon \phi ]\right]_{\epsilon =0}\\&{}=\left[{\frac {d\ }{d\epsilon }}\,\left({\frac {1}{2}}\iint {\frac {[\rho ({\boldsymbol {r}})+\epsilon \phi ({\boldsymbol {r}})]\,[\rho ({\boldsymbol {r}}')+\epsilon \phi ({\boldsymbol {r}}')]}{\vert {\boldsymbol {r}}-{\boldsymbol {r}}'\vert }}\,d{\boldsymbol {r}}d{\boldsymbol {r}}'\right)\right]_{\epsilon =0}\\&{}={\frac {1}{2}}\iint {\frac {\rho ({\boldsymbol {r}}')\phi ({\boldsymbol {r}})}{\vert {\boldsymbol {r}}-{\boldsymbol {r}}'\vert }}\,d{\boldsymbol {r}}d{\boldsymbol {r}}'+{\frac {1}{2}}\iint {\frac {\rho ({\boldsymbol {r}})\phi ({\boldsymbol {r}}')}{\vert {\boldsymbol {r}}-{\boldsymbol {r}}'\vert }}\,d{\boldsymbol {r}}d{\boldsymbol {r}}'\\\end{aligned}}}

${\displaystyle \int {\frac {\delta J}{\delta \rho ({\boldsymbol {r}})}}\phi ({\boldsymbol {r}})d{\boldsymbol {r}}=\int \left(\int {\frac {\rho ({\boldsymbol {r}}')}{\vert {\boldsymbol {r}}-{\boldsymbol {r}}'\vert }}d{\boldsymbol {r}}'\right)\phi ({\boldsymbol {r}})d{\boldsymbol {r}}}$

${\displaystyle {\frac {\delta J}{\delta \rho ({\boldsymbol {r}})}}=\int {\frac {\rho ({\boldsymbol {r}}')}{\vert {\boldsymbol {r}}-{\boldsymbol {r}}'\vert }}d{\boldsymbol {r}}'\,.}$

${\displaystyle {\frac {\delta ^{2}J[\rho ]}{\delta \rho (\mathbf {r} ')\delta \rho (\mathbf {r} )}}={\frac {\partial }{\partial \rho (\mathbf {r} ')}}\left({\frac {\rho (\mathbf {r} ')}{\vert \mathbf {r} -\mathbf {r} '\vert }}\right)={\frac {1}{\vert \mathbf {r} -\mathbf {r} '\vert }}.}$

#### 魏茨泽克动能泛函

1935 年，魏茨泽克提出，在托馬斯－費米動能泛函中添加一項梯度修正，使之能更準確描述分子的電子雲：

${\displaystyle T_{\mathrm {W} }[\rho ]={\frac {1}{8}}\int {\frac {\nabla \rho (\mathbf {r} )\cdot \nabla \rho (\mathbf {r} )}{\rho (\mathbf {r} )}}d\mathbf {r} =\int t_{\mathrm {W} }\ d\mathbf {r} \,,}$

${\displaystyle t_{\mathrm {W} }\equiv {\frac {1}{8}}{\frac {\nabla \rho \cdot \nabla \rho }{\rho }}\qquad {\text{and}}\ \ \rho =\rho ({\boldsymbol {r}})\ .}$

{\displaystyle {\begin{aligned}{\frac {\delta T_{\mathrm {W} }}{\delta \rho ({\boldsymbol {r}})}}&={\frac {\partial t_{\mathrm {W} }}{\partial \rho }}-\nabla \cdot {\frac {\partial t_{\mathrm {W} }}{\partial \nabla \rho }}\\&=-{\frac {1}{8}}{\frac {\nabla \rho \cdot \nabla \rho }{\rho ^{2}}}-\left({\frac {1}{4}}{\frac {\nabla ^{2}\rho }{\rho }}-{\frac {1}{4}}{\frac {\nabla \rho \cdot \nabla \rho }{\rho ^{2}}}\right)\qquad {\text{where}}\ \ \nabla ^{2}=\nabla \cdot \nabla \ ,\end{aligned}}}

${\displaystyle {\frac {\delta T_{\mathrm {W} }}{\delta \rho ({\boldsymbol {r}})}}=\ \ \,{\frac {1}{8}}{\frac {\nabla \rho \cdot \nabla \rho }{\rho ^{2}}}-{\frac {1}{4}}{\frac {\nabla ^{2}\rho }{\rho }}\ .}$

#### 将函数表示成泛函

${\displaystyle \rho (\mathbf {r} )=\int \rho (\mathbf {r} ')\delta (\mathbf {r} -\mathbf {r} ')\,d\mathbf {r} '.}$

${\displaystyle {\frac {\delta \rho (\mathbf {r} )}{\delta \rho (\mathbf {r} ')}}={\frac {\partial \rho (\mathbf {r} ')\delta (\mathbf {r} -\mathbf {r} ')}{\partial \rho (\mathbf {r} ')}}=\delta (\mathbf {r} -\mathbf {r} ').}$

#### 熵

{\displaystyle {\begin{aligned}H[p(x)]=-\sum _{x}p(x)\log p(x)\end{aligned}}}

{\displaystyle {\begin{aligned}\left\langle {\frac {\delta H}{\delta p}},\phi \right\rangle &{}=\sum _{x}{\frac {\delta H[p(x)]}{\delta p(x')}}\,\phi (x')\\&{}=\left.{\frac {d}{d\epsilon }}H[p(x)+\epsilon \phi (x)]\right|_{\epsilon =0}\\&{}=-{\frac {d}{d\varepsilon }}\left.\sum _{x}[p(x)+\varepsilon \phi (x)]\log[p(x)+\varepsilon \phi (x)]\right|_{\varepsilon =0}\\&{}=\displaystyle -\sum _{x}[1+\log p(x)]\phi (x)\\&{}=\left\langle -[1+\log p(x)],\phi \right\rangle .\end{aligned}}}

${\displaystyle {\frac {\delta H}{\delta p}}=-1-\log p(x).}$

#### 指数

${\displaystyle F[\varphi (x)]=e^{\int \varphi (x)g(x)dx}.}$

${\displaystyle \delta }$函数作为测量函数

{\displaystyle {\begin{aligned}{\frac {\delta F[\varphi (x)]}{\delta \varphi (y)}}&{}=\lim _{\varepsilon \to 0}{\frac {F[\varphi (x)+\varepsilon \delta (x-y)]-F[\varphi (x)]}{\varepsilon }}\\&{}=\lim _{\varepsilon \to 0}{\frac {e^{\int (\varphi (x)+\varepsilon \delta (x-y))g(x)dx}-e^{\int \varphi (x)g(x)dx}}{\varepsilon }}\\&{}=e^{\int \varphi (x)g(x)dx}\lim _{\varepsilon \to 0}{\frac {e^{\varepsilon \int \delta (x-y)g(x)dx}-1}{\varepsilon }}\\&{}=e^{\int \varphi (x)g(x)dx}\lim _{\varepsilon \to 0}{\frac {e^{\varepsilon g(y)}-1}{\varepsilon }}\\&{}=e^{\int \varphi (x)g(x)dx}g(y).\end{aligned}}}

${\displaystyle {\frac {\delta F[\varphi (x)]}{\delta \varphi (y)}}=g(y)F[\varphi (x)].}$

## 注释

1. ^ 在三維笛卡尔坐标系中，
{\displaystyle {\begin{aligned}{\frac {\partial f}{\partial \nabla \rho }}={\frac {\partial f}{\partial \rho _{x}}}\mathbf {\hat {i}} +{\frac {\partial f}{\partial \rho _{y}}}\mathbf {\hat {j}} +{\frac {\partial f}{\partial \rho _{z}}}\mathbf {\hat {k}} \,,\qquad &{\text{where}}\ \rho _{x}={\frac {\partial \rho }{\partial x}}\,,\ \rho _{y}={\frac {\partial \rho }{\partial y}}\,,\ \rho _{z}={\frac {\partial \rho }{\partial z}}\,\\&{\text{and}}\ \ \mathbf {\hat {i}} ,\ \mathbf {\hat {j}} ,\ \mathbf {\hat {k}} \ \ {\text{are unit vectors along the x, y, z axes.}}\end{aligned}}}
2. ^ 例如，對於三維 (n = 3) 和二階 (i = 2) 導數，張量 (2) 的分量為
${\displaystyle \left[\nabla ^{(2)}\right]_{\alpha \beta }={\frac {\partial ^{\,2}}{\partial r_{\alpha }\,\partial r_{\beta }}}\qquad \qquad {\text{where}}\quad \alpha ,\beta =1,2,3\,.}$
3. ^ 例如，當 n = 3i = 2時，張量的純量積為
${\displaystyle \nabla ^{(2)}\cdot {\frac {\partial f}{\partial \left(\nabla ^{(2)}\rho \right)}}=\sum _{\alpha ,\beta =1}^{3}\ {\frac {\partial ^{\,2}}{\partial r_{\alpha }\,\partial r_{\beta }}}\ {\frac {\partial f}{\partial \rho _{\alpha \beta }}}\qquad {\text{where}}\ \ \rho _{\alpha \beta }\equiv {\frac {\partial ^{\,2}\rho }{\partial r_{\alpha }\,\partial r_{\beta }}}\ .}$

## 参考来源

1. ^ Parr & Yang 1989，p. 247, Eq. A.3）.
2. ^ Parr & Yang 1989，p. 247, Eq. A.4）.
3. ^ Greiner & Reinhardt 1996，p. 38, Eq. 6）.
4. ^ Greiner & Reinhardt 1996，p. 38, Eq. 7）.
5. ^ Parr & Yang 1989，p. 248, Eq. A.11）.
6. ^ Parr & Yang 1989，p. 247, Eq. A.9）.