# 派克变换

## 定义

${\displaystyle {\mathbf {i} }_{dq0}={\mathbf {P} }{\mathbf {i} }_{abc}={\frac {2}{3}}\left[{\begin{array}{*{20}c}{\cos \theta }&{\cos \left({\theta -120^{\circ }}\right)}&{\cos \left({\theta +120^{\circ }}\right)}\\{-\sin \theta }&{-\sin \left({\theta -120^{\circ }}\right)}&{-\sin \left({\theta +120^{\circ }}\right)}\\{\frac {1}{2}}&{\frac {1}{2}}&{\frac {1}{2}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{i_{a}}\\{i_{b}}\\{i_{c}}\\\end{array}}\right]}$

${\displaystyle {\mathbf {i} }_{abc}={\mathbf {P} }^{-1}{\mathbf {i} }_{dq0}=\left[{\begin{array}{*{20}c}{\cos \theta }&{-\sin \theta }&1\\{\cos \left({\theta -120^{\circ }}\right)}&{-\sin \left({\theta -120^{\circ }}\right)}&1\\{\cos \left({\theta +120^{\circ }}\right)}&{-\sin \left({\theta +120^{\circ }}\right)}&1\\\end{array}}\right]\left[{\begin{array}{*{20}c}{i_{d}}\\{i_{q}}\\{i_{0}}\\\end{array}}\right]}$

## 用派克变换化简同步发电机基本方程

### 变换后的磁链方程

${\displaystyle \left[{\begin{array}{*{20}c}{{\mathbf {\Psi } }_{abc}}\\{{\mathbf {\Psi } }_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf {L} }_{SS}}&{{\mathbf {L} }_{SR}}\\{{\mathbf {L} }_{RS}}&{{\mathbf {L} }_{RR}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf {i} }_{abc}}\\{{\mathbf {i} }_{fDQ}}\\\end{array}}\right]}$

${\displaystyle \left[{\begin{array}{*{20}c}{{\mathbf {\Psi } }_{dq0}}\\{{\mathbf {\Psi } }_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{\mathbf {P} }&{}\\{}&{\mathbf {U} }\\\end{array}}\right]\left[{\begin{array}{*{20}c}{{\mathbf {L} }_{SS}}&{{\mathbf {L} }_{SR}}\\{{\mathbf {L} }_{RS}}&{{\mathbf {L} }_{RR}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{{\mathbf {P} }^{-1}}&{}\\{}&{\mathbf {U} }\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf {i} }_{abc}}\\{{\mathbf {i} }_{fDQ}}\\\end{array}}\right]}$

${\displaystyle \left[{\begin{array}{*{20}c}{{\mathbf {\Psi } }_{dq0}}\\{{\mathbf {\Psi } }_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf {PL} }_{SS}{\mathbf {P} }^{-1}}&{{\mathbf {PL} }_{SR}}\\{{\mathbf {L} }_{RS}{\mathbf {P} }^{-1}}&{{\mathbf {L} }_{RR}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf {i} }_{dq0}}\\{{\mathbf {i} }_{fDQ}}\\\end{array}}\right]}$

① 变换后的电感系数都变为常数，可以假想dd绕组，qq绕组是固定在转子上的，相对转子静止。

② 派克变换阵对定子自感矩阵 ${\displaystyle {\mathbf {L} }_{SS}}$ 起到了对角化的作用，并消去了其中的角度变量。${\displaystyle {L_{d}},{L_{q}},{L_{0}}}$ 为其特征根。

③ 变换后定子和转子间的互感系数不对称，这是由于派克变换的矩阵不是正交矩阵

${\displaystyle {L_{d}}}$ 为直轴同步电感系数，其值相当于当励磁绕组开路，定子合成磁势产生单纯直轴磁场时，任意一相定子绕组的自感系数。

### 变换后的电压方程

${\displaystyle \left[{\begin{array}{*{20}c}{{\mathbf {U} }_{abc}}\\{{\mathbf {U} }_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf {r} }_{S}}&{}\\{}&{{\mathbf {r} }_{R}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf {i} }_{abc}}\\{{\mathbf {i} }_{fDQ}}\\\end{array}}\right]+\left[{\begin{array}{*{20}c}{{\mathbf {\dot {\Psi }} }_{abc}}\\{{\mathbf {\dot {\Psi }} }_{fDQ}}\\\end{array}}\right]}$

${\displaystyle \left[{\begin{array}{*{20}c}{{\mathbf {U} }_{dq0}}\\{{\mathbf {U} }_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf {r} }_{S}}&{}\\{}&{{\mathbf {r} }_{R}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf {i} }_{dq0}}\\{{\mathbf {i} }_{fDQ}}\\\end{array}}\right]+\left[{\begin{array}{*{20}c}{{\mathbf {P{\dot {\Psi }}} }_{abc}}\\{{\mathbf {\dot {\Psi }} }_{fDQ}}\\\end{array}}\right]}$

${\displaystyle {\mathbf {\Psi } }_{dq0}={\mathbf {P\Psi } }_{abc}}$

## 注释

1. ^ 定子电感矩阵 ${\displaystyle {\mathbf {L} }_{SS}=\left[{\begin{array}{*{20}c}{L_{aa}}&{M_{ab}}&{M_{ac}}\\{M_{ba}}&{L_{bb}}&{M_{bc}}\\{M_{ca}}&{M_{cb}}&{L_{cc}}\\\end{array}}\right]}$
其中
${\displaystyle L_{aa}=l_{0}+l_{2}\cos \left(2\theta \right)}$
${\displaystyle L_{bb}=l_{0}+l_{2}\cos 2\left({\theta -120^{\circ }}\right)}$
${\displaystyle L_{cc}=l_{0}+l_{2}\cos 2\left({\theta +120^{\circ }}\right)}$
${\displaystyle M_{ab}=M_{ba}=-m_{0}-m_{2}\cos 2\left({\theta +30^{\circ }}\right)}$
${\displaystyle M_{bc}=M_{cb}=-m_{0}-m_{2}\cos 2\left({\theta -90^{\circ }}\right)}$
${\displaystyle M_{ca}=M_{ac}=-m_{0}-m_{2}\cos 2\left({\theta +150^{\circ }}\right)}$

## 参考书目

• 电机电子类科《电力系统暂态分析》，ISBN 978-7-5083-4825-4，作者：李光琦，中国电力出版社。