# 溫度係數

${\displaystyle \operatorname {R} (T)=\operatorname {R} (T_{0})(1+\alpha \Delta T)}$

## 電阻的溫度係數

${\displaystyle \operatorname {\rho } (T)=\rho _{0}[1+\alpha _{0}(T-T_{0})]}$

${\displaystyle \alpha _{0}={\frac {1}{\rho _{0}}}\left[{\frac {\Delta \rho }{\Delta T}}\right]_{T=T_{0}}}$

${\displaystyle \rho _{0}}$只是對應某一特定溫度（例如T = 0 °C）下的電阻率[1]

${\displaystyle \operatorname {\rho } (T)=S\alpha ^{\frac {B}{T}}}$

### 電阻的負溫度係數

${\displaystyle R=A\cdot e^{\frac {B}{T}}}$

${\displaystyle R=r^{\infty }e^{\frac {B}{T}}=R_{0}e^{-{\frac {B}{T_{0}}}}e^{\frac {B}{T}}}$

## 可逆溫度係數

${\displaystyle RTC={\frac {\Delta Br}{Br\Delta T}}\times 100\%}$

## 核反應度的溫度係數

${\displaystyle \alpha _{T}={\frac {\partial \rho }{\partial T}}}$

## 參考資料

1. ^ Kasap, S. O. Principles of Electronic Materials and Devices Third. Mc-Graw Hill. 2006: 126.
2. ^ Alenitsyn, Alexander G.; Butikov, Eugene I.; Kondraryez, Alexander S. Concise Handbook of Mathematics and Physics. CRC Press. 1997: 331–332. ISBN 0-8493-7745-5.
3. ^ About Us. Electron Energy Corporation. （原始内容存档于2009-10-29）.
4. ^ Duderstadt & Hamilton 1976, pp. 259–261
5. ^ Duderstadt & Hamilton 1976, pp. 556–559
• Duderstadt, James J.; Hamilton, Louis J. Nuclear Reactor Analysis. Wiley. 1976. ISBN 0-471-22363-8.