# 無限面體

## 正無限面體

 图像 施萊夫利符號 三角形鑲嵌 正方形鑲嵌 六邊形鑲嵌 {3,6} {4,4} {6,3}

## 無限胞體

維度 图像 施萊夫利符號 三維 退化四維 四維 退化五維 立方體堆砌 超立方體堆砌 十六胞體堆砌 {4,3,4} {4,3,3,4} {3,3,4,3}

## 扭歪無限面體

 圖像 施萊夫利符號 {4,6|4} {6,4|4} {6,6|3}

## 雙曲空間

 圖像 施萊夫利符號 七階三角形鑲嵌 五階正方形鑲嵌 四階五邊形鑲嵌 四階六邊形鑲嵌 七邊形鑲嵌 {3,7} {4,5} {5,4} {6,4} {7,3}

 圖像 施萊夫利符號 六階四面體堆砌 五階立方體堆砌 四階八面體堆砌 四階十二面體堆砌 三階二十面體堆砌 {3,3,6} {4,3,5} {3,4,4} {5,3,4} {3,5,3}

## 參考文獻

1. Coxeter, H. S. M. Regular Polytopes 3rd ed. New York: Dover Publications. 1973: 121–122. ISBN 0-486-61480-8. p.296, Table II: Regular honeycombs
2. Peter McMullen, Egon Schulte, Abstract Regular Polytopes, Cambridge University Press, 2002. ISBN 0-521-81496-0 (Page 25)
3. Williams, Robert. The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. 1979: 164–199. ISBN 0-486-23729-X. Chapter 5: Polyhedra packing and space filling
4. Critchlow, K.: Order in space.
5. Pearce, P.: Structure in nature is a strategy for design.
1. ^ John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, ISBN 978-1-56881-220-5 (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, Architectonic and Catoptric tessellations, p 292-298, includes all the nonprismatic forms)
2. ^ Garner, C. W. L. Regular Skew Polyhedra in Hyperbolic Three-Space. Canad. J. Math. 19, 1179–1186, 1967. [1] Note: His paper says there are 32, but one is self-dual, leaving 31.