# 爱因斯坦-希尔伯特作用量

${\displaystyle S[g]=\int {1 \over 2\kappa }R{\sqrt {-g}}\,\mathrm {d} ^{4}x}$

${\displaystyle S[g]=\int {1 \over 2\kappa }R\,\mathrm {dV} \,}$

## 导出爱因斯坦引力场方程

${\displaystyle S=\int \left[{1 \over 2\kappa }\,R+{\mathcal {L}}_{\mathrm {M} }\right]{\sqrt {-g}}\,\mathrm {d} ^{4}x}$

{\displaystyle {\begin{aligned}0&=\delta S\\&=\int \left[{1 \over 2\kappa }{\frac {\delta ({\sqrt {-g}}R)}{\delta g^{\mu \nu }}}+{\frac {\delta ({\sqrt {-g}}{\mathcal {L}}_{\mathrm {M} })}{\delta g^{\mu \nu }}}\right]\delta g^{\mu \nu }\mathrm {d} ^{4}x\\&=\int \left[{1 \over 2\kappa }\left({\frac {\delta R}{\delta g^{\mu \nu }}}+{\frac {R}{\sqrt {-g}}}{\frac {\delta {\sqrt {-g}}}{\delta g^{\mu \nu }}}\right)+{\frac {1}{\sqrt {-g}}}{\frac {\delta ({\sqrt {-g}}{\mathcal {L}}_{\mathrm {M} })}{\delta g^{\mu \nu }}}\right]\delta g^{\mu \nu }{\sqrt {-g}}\,\mathrm {d} ^{4}x.\end{aligned}}}

${\displaystyle {\frac {\delta R}{\delta g^{\mu \nu }}}+{\frac {R}{\sqrt {-g}}}{\frac {\delta {\sqrt {-g}}}{\delta g^{\mu \nu }}}=-2\kappa {\frac {1}{\sqrt {-g}}}{\frac {\delta ({\sqrt {-g}}{\mathcal {L}}_{\mathrm {M} })}{\delta g^{\mu \nu }}},}$

${\displaystyle T_{\mu \nu }:=-2{\frac {1}{\sqrt {-g}}}{\frac {\delta ({\sqrt {-g}}{\mathcal {L}}_{\mathrm {M} })}{\delta g^{\mu \nu }}}=-2{\frac {\delta {\mathcal {L}}_{\mathrm {M} }}{\delta g^{\mu \nu }}}+g_{\mu \nu }{\mathcal {L}}_{\mathrm {M} }.}$

### 黎曼张量、里奇张量和里奇标量的变分

${\displaystyle {R^{\rho }}_{\sigma \mu \nu }=\partial _{\mu }\Gamma _{\nu \sigma }^{\rho }-\partial _{\nu }\Gamma _{\mu \sigma }^{\rho }+\Gamma _{\mu \lambda }^{\rho }\Gamma _{\nu \sigma }^{\lambda }-\Gamma _{\nu \lambda }^{\rho }\Gamma _{\mu \sigma }^{\lambda },}$

${\displaystyle \delta {R^{\rho }}_{\sigma \mu \nu }=\partial _{\mu }\delta \Gamma _{\nu \sigma }^{\rho }-\partial _{\nu }\delta \Gamma _{\mu \sigma }^{\rho }+\delta \Gamma _{\mu \lambda }^{\rho }\Gamma _{\nu \sigma }^{\lambda }+\Gamma _{\mu \lambda }^{\rho }\delta \Gamma _{\nu \sigma }^{\lambda }-\delta \Gamma _{\nu \lambda }^{\rho }\Gamma _{\mu \sigma }^{\lambda }-\Gamma _{\nu \lambda }^{\rho }\delta \Gamma _{\mu \sigma }^{\lambda }.}$

${\displaystyle \nabla _{\lambda }(\delta \Gamma _{\nu \mu }^{\rho })=\partial _{\lambda }(\delta \Gamma _{\nu \mu }^{\rho })+\Gamma _{\sigma \lambda }^{\rho }\delta \Gamma _{\nu \mu }^{\sigma }-\Gamma _{\nu \lambda }^{\sigma }\delta \Gamma _{\sigma \mu }^{\rho }-\Gamma _{\mu \lambda }^{\sigma }\delta \Gamma _{\nu \sigma }^{\rho }}$

${\displaystyle \delta R^{\rho }{}_{\sigma \mu \nu }=\nabla _{\mu }(\delta \Gamma _{\nu \sigma }^{\rho })-\nabla _{\nu }(\delta \Gamma _{\mu \sigma }^{\rho }).}$

${\displaystyle \delta R_{\mu \nu }\equiv \delta R^{\rho }{}_{\mu \rho \nu }=\nabla _{\rho }(\delta \Gamma _{\nu \mu }^{\rho })-\nabla _{\nu }(\delta \Gamma _{\rho \mu }^{\rho }).}$

${\displaystyle R=g^{\mu \nu }R_{\mu \nu }.\!}$

{\displaystyle {\begin{aligned}\delta R&=R_{\mu \nu }\delta g^{\mu \nu }+g^{\mu \nu }\delta R_{\mu \nu }\\&=R_{\mu \nu }\delta g^{\mu \nu }+\nabla _{\sigma }\left(g^{\mu \nu }\delta \Gamma _{\nu \mu }^{\sigma }-g^{\mu \sigma }\delta \Gamma _{\rho \mu }^{\rho }\right)\end{aligned}}}

${\displaystyle {\frac {\delta R}{\delta g^{\mu \nu }}}=R_{\mu \nu }}$

### 度规行列式的变分

${\displaystyle \,\!\delta g=g\,g^{\mu \nu }\delta g_{\mu \nu }}$

{\displaystyle {\begin{aligned}\delta {\sqrt {-g}}&=-{\frac {1}{2{\sqrt {-g}}}}\delta g&={\frac {1}{2}}{\sqrt {-g}}(g^{\mu \nu }\delta g_{\mu \nu })&=-{\frac {1}{2}}{\sqrt {-g}}(g_{\mu \nu }\delta g^{\mu \nu }),\end{aligned}}}

${\displaystyle {\frac {1}{\sqrt {-g}}}{\frac {\delta {\sqrt {-g}}}{\delta g^{\mu \nu }}}=-{\frac {1}{2}}g_{\mu \nu }}$

### 运动方程

${\displaystyle R_{\mu \nu }-{\frac {1}{2}}g_{\mu \nu }R={\frac {8\pi G}{c^{4}}}T_{\mu \nu },}$

## 宇宙学常数

${\displaystyle R_{\mu \nu }-{\frac {1}{2}}g_{\mu \nu }R+\Lambda g_{\mu \nu }={\frac {8\pi G}{c^{4}}}T_{\mu \nu }\,}$

${\displaystyle S=\int \left[{1 \over 2\kappa }\left(R-2\Lambda \right)+{\mathcal {L}}_{\mathrm {M} }\right]{\sqrt {-g}}\,\mathrm {d} ^{4}x}$