生成对抗网络

维基百科,自由的百科全书
跳到导航 跳到搜索

生成对抗网络英语:Generative Adversarial Network,简称GAN)是非监督式学习的一种方法,通过让两个神经網路相互博弈的方式进行学习。该方法由伊恩·古德费洛等人于2014年提出。[1]

生成对抗网络由一个生成网络与一个判别网络组成。生成网络从潜在空间(latent space)中随机采样作为输入,其输出结果需要尽量模仿训练集中的真实样本。判别网络的输入则为真实样本或生成网络的输出,其目的是将生成网络的输出从真实样本中尽可能分辨出来。而生成网络则要尽可能地欺骗判别网络。两个网络相互对抗、不断调整参数,最终目的是使判别网络无法判断生成网络的输出结果是否真实。[2][1][3]

生成对抗网络常用于生成以假乱真的图片。[4]此外,该方法还被用于生成视频[5]、三维物体模型[6]等。

参考文献[编辑]

  1. ^ 1.0 1.1 Goodfellow, Ian J.; Pouget-Abadie, Jean; Mirza, Mehdi; Xu, Bing; Warde-Farley, David; Ozair, Sherjil; Courville, Aaron; Bengio, Yoshua. Generative Adversarial Networks. 2014. arXiv:1406.2661 [stat.ML]. 
  2. ^ 能根據文字生成圖片的 GAN,深度學習領域的又一新星
  3. ^ Andrej Karpathy, Pieter Abbeel, Greg Brockman, Peter Chen, Vicki Cheung, Rocky Duan, Ian Goodfellow, Durk Kingma, Jonathan Ho, Rein Houthooft, Tim Salimans, John Schulman, Ilya Sutskever, And Wojciech Zaremba, Generative Models, OpenAI, [April 7, 2016] 
  4. ^ Salimans, Tim; Goodfellow, Ian; Zaremba, Wojciech; Cheung, Vicki; Radford, Alec; Chen, Xi. Improved Techniques for Training GANs. 2016. arXiv:1606.03498 [cs.LG]. 
  5. ^ [1][失效連結]
  6. ^ 3D Generative Adversarial Network