电子排布

维基百科,自由的百科全书
跳转至: 导航搜索

電子排序,即電子組態,也即電子構型,是指電子原子分子或其他物理結構中的每一層電子層上的排序及排列形態。

正如其他基本粒子,電子遵從量子物理學,而不是一般的經典物理學;電子也因此有波粒二象性。而且,根據量子物理學中的《哥本哈根詮釋》,任一特定電子的確實位置是不會知道的(軌域及軌跡放到一旁不計),直至偵測活動進行使電子被偵測到。在空間中,該測量將會檢測的電子在某一特定點的概率,和在這一點上的波函數絕對值平方正比

電子能夠由發射或吸收一個量子的能量從一個能級跃迁到另一個能級,其形式是一個光子。由於包利不相容原理,沒有兩個以上的電子可以存在於某個原子軌域(軌域不等於電子層);因此,一個電子只可跨越到另有空缺位置的軌域。

知道不同的原子的電子構型有助了解元素週期表中的元素的結構。這個概念也有用於描述約束原子的多個化學鍵。在散裝物料的研究中這一理念可以說明激光器半導體的奇特性能。

原子轨道的种类[编辑]

作为薛定谔方程的解,原子轨道的种类取决于主量子数n)、角量子数l)和磁量子数ml)。其中,主量子数就相当于电子层,角量子数相当于亚层,而磁量子数决定了原子轨道的伸展方向。另外,每个原子轨道里都可以填充两个电子,所以对于电子,需要再加一个自旋量子数(ms),一共四个量子数

n可以取任意正整数。在n取一定值时,l可以取小于n自然数ml可以取±l。不论什么轨道,ms都只能取±1/2,两个电子自旋相反。因此,s轨道l=0)上只能填充2个电子,p轨道l=1)上能填充6个,一个轨道填充的电子数为4l+2。

具有角量子数0、1、2、3的轨道分别叫做s轨道p轨道d轨道f轨道。之后的轨道名称,按字母顺序排列,如l=4时叫g轨道

排布的規則[编辑]

電子的排布遵循以下三個規則:

整個體系的能量越低越好。一般來說,新填入的電子都是填在能量最低的空軌道上的。

電子盡可能的佔據不同軌道,自旋方向相同。

在同一體系中,沒有兩個電子的四個量子數是完全相同的。

同一亞層中的各個軌道是簡並的,能级交错是电子随核电荷递增填充电子次序上的交错,并非先填能级的能量一定比后填能级的能量低。各亞層之間有能級交錯現象:

1s
2s 2p
3s 3p
4s 3d 4p
5s 4d 5p
6s 4f 5d 6p
7s 5f 6d 7p
8s 5g 6f 7d 8p

有幾個原子的排布不完全遵守上面的規則,如:

這是因為同一亞層中,全充滿、半充滿、全空的狀態是最穩定的。這種方式的整體能量比3d44s2要低,因為所有亞層均處於穩定狀態。

排布示例

以鉻為例:

  1. 鉻原子核外有24個電子,可以填滿1s至4s所有的軌道,還剩餘4個填入3d軌道:
    • 1s22s22p63s23p64s23d4
  2. 由於半充滿更穩定,排布發生變化:
    • 1s22s22p63s23p64s13d5
  3. 除了6個價電子之外,其餘的電子一般不發生化學反應,於是簡寫為:
    • [Ar]4s13d5
  4. 這裏,具有氬的電子構型的那18個電子稱為“原子實”。一般把主量子數小的寫在前面:
    • [Ar]3d54s1

电子构型对性质的影响[编辑]

电子的排布情况,即电子构型,是元素性质的决定性因素。

为了达到全充满、半充满、全空的稳定状态,不同的原子选择不同的方式。具有同样价电子构型的原子,理论上得或失电子的趋势是相同的,这就是同一族元素性质相近的原因;同一族元素中,由于周期越高,价电子的能量就越高,就越容易失去。

元素周期表中的区块是根据价电子构型的显著区别划分的。不同区的元素性质差别同样显著:如s区元素只能形成简单的离子,而d区过渡金属可以形成配合物

参见[编辑]