笛卡儿积

维基百科,自由的百科全书
跳到导航 跳到搜索

数学中,两个集合笛卡儿积Cartesian product),又称直积,在集合论中表示为,是所有可能的有序对組成的集合,其中有序對的第一个对象是的成员,第二个对象是的成员。

舉個實例,如果集合是13个元素的点数集合,而集合是4个元素的花色集合♠, ♥, ♦, ♣,则这两个集合的笛卡儿积是有52个元素的标准扑克牌的集合

笛卡儿积得名于笛卡儿,因為這概念是由他建立的解析几何引申出來

笛卡儿积的性质[编辑]

易见笛卡儿积满足下列性质:

  • 对于任意集合,根据定义有
  • 一般来说笛卡儿积不满足交换律结合律
  • 笛卡儿积对集合的满足分配律,即



笛卡儿平方和n元乘积[编辑]

集合笛卡儿平方(或二元笛卡儿积)是笛卡儿积。一个例子是二维平面,(这里实数集) - 它包含所有的点,这里的是实数(参见笛卡儿坐标系)。

为了幫助枚舉,可绘制一个表格。一个集合作为行而另一个集合作为列,从行和列的集合选择元素,以形成有序对作为表的单元格。

可以推广到在个集合上的n-元笛卡儿积:

实际上,它可以被等同为。它是n-元组的集合。

一个例子是欧几里得三维空间,这里的同樣是指实数集。

无穷乘积[编辑]

对最常用的数学应用而言,上述定义通常已經足夠。但是,也可以在任意(可能无限)的集合的搜集上定义笛卡儿积。如果是任何指标集合,而

是由索引的集合的搜集,则我们定义

就是定义在索引集合上的所有函数的集合,使得这些函数在特定索引上的值是的元素。

对在中每个,定义自

的函数

叫做投影映射

n-元组可以被看作在上的函数,它在上的值是这个元组的第个元素。所以,在的时候,这个定义跟有限情况的定义是一致的。在无限情况下这个定义給出的是集合族

在无限情况,一個令人熟悉的特例是,當索引集合是自然数集的时候:这正是其中第i项对应于集合的所有无限序列的集合。再次,提供了这样的一个例子:

是实数的无限序列的搜集,可視之为带有無限個构件的向量或元组。另一个特殊情况(上述例子也满足它)是在乘积中的各因子Xi都是相同的时候,类似于“笛卡儿指数”。這樣,在最先定义中的无限并集自身就是这个集合自身,而其他条件被平凡的满足了,所以这正是从IX的所有函数的集合。

在別的情況,无限笛卡儿积就不那麼直觀了;尽管在高等数学中的應用有其价值。

“非空集合的任意非空搜集的笛卡儿积为非空”這一陳述等价于选择公理

函数的笛卡儿积[编辑]

如果是从的函数,而是从的函数,则它们的笛卡儿积是从的函数,带有

跟之前類似,函数的笛卡儿积也可以扩展到函数的元组和无限情況。

外部链接[编辑]

参见[编辑]