线性时不变系统理论

维基百科,自由的百科全书
跳转至: 导航搜索

电子工程中,尤其是在电路信号处理控制理论中,线性时不变系统理论研究的是线性时不变系统对于任意输入信号的响应。尽管标准的独立变量是时间,但是也可以很容易地使用空间(如图像处理场论中那样)或者其它的坐标系统。在离散系统中对应的术语是线性移位不变系统

概述[编辑]

顾名思义,线性时不变系统必须满足同时满足线性时不变性

  • 线性,指系统的输入和输出之间同时满足齐次性和叠加性。即,若系统的输入为
x(t) = Ax_1(t) + Bx_2(t) \,
那么系统输出为
y(t) = Ay_1(t) + By_2(t) \,
对于任何AB都成立。其中y_i(t)是输入为x_i(t)时系统的输出。
  • 时不变性,指如果将系统的输入信号延迟\tau秒,那么得到的输出除了这\tau秒延时以外是完全相同的,称这样的系统是“时不变”的。即若系统输入x(t),对应的输出为y(t),则输入为x(t+\tau)时系统的输出为y(t+\tau)

LTI系统的理论的基本结论是任何LTI系统都可以完全用一个单一方程来表示,称为系统的冲激响应。系统的输出可以简单表示为输入信号与系统的冲激响应的卷积

连续时间系统[编辑]

时不变与线性变换[编辑]

我们从一个冲激响应是二维函数的时变系统开始看看时不变这个条件是如何将它简化成一维的。例如,假设输入信号是 x(t), 其中 index set 是实轴,即 t \in \mathbb{R}线性算子 \mathcal{H} 表示系统对输入信号的变换。对于这个 index set 来说合适的算子是一个二维函数

h(t_1, t_2) \mbox{ where } t_1, t_2 \in \mathbb{R}.

由于 \mathcal{H} 是线性算子,系统对于输入信号 x(t) 所起的变换是下面重叠积分表示的线性变换

y(t_1) = \int_{-\infty}^{\infty} h(t_1, t_2) \, x(t_2) \, d t_2.

如果线性算子 \mathcal{H} 也是时不变的,那么

 h(t_1, t_2) = h(t_1 + \tau, t_2 + \tau)  \qquad  \forall \, \tau \in \mathbb{R}.

 \tau = -t_2, \,

那么得到

h(t_1, t_2) = h(t_1 - t_2, 0).  \,

出于化简的考虑,我们通常丢掉 h (t_1, t_2) 中的第二个参数 0,这样重叠积分就变成了滤波中常见卷积

y(t_1) = \int_{-\infty}^{\infty} h(t_1 - t_2) \, x(t_2) \, d t_2 = (h * x) (t_1).

这样,这个卷积就表示线性时不变系统对于任意输入函数所起的作用。对于有限维的模拟信号,参见轮换矩阵

冲激响应[编辑]

如果我们给系统输入一个狄拉克δ函数信号,由于狄拉克δ函数是一个理想脉冲,所以线性时不变的结果是冲激响应,这可以表示为:

 (h * \delta) (t) = \int_{-\infty}^{\infty} h(t - \tau) \, \delta (\tau) \, d \tau = h(t),

(根据狄拉克δ函数的 sifting 特性)。

注意

h(t) = h(t, 0) \ (\mbox{with } t = t_1 - t_2)

这样 h(t) 就是系统的冲激响应。

根据下面的方法我们可以用冲激响应计算任意输入信号的响应。再次应用 \delta(t) 的 shifting 特性,我们可以将输入写成δ的叠加:

x(t) = \int_{-\infty}^\infty x(\tau) \delta(t-\tau) \,d\tau

这个输入经过系统变换,

\mathcal{H} x(t) = \mathcal{H} \int_{-\infty}^\infty x(\tau) \delta(t-\tau) \,d\tau
\quad = \int_{-\infty}^\infty \mathcal{H} x(\tau) \delta(t-\tau) \,d\tau (由于 \mathcal{H} 是线性的所以可以在积分间传递)
\quad = \int_{-\infty}^\infty x(\tau) \mathcal{H} \delta(t-\tau) \,d\tau (由于 x(\tau)t 中是常量并且 \mathcal{H} 是线性的)
\quad = \int_{-\infty}^\infty x(\tau) h(t-\tau) \,d\tau (根据 h(t) 的定义)

系统的所有信息都包含在冲激响应 h(t) 中。

傅里叶与拉普拉斯变换[编辑]

例子[编辑]

一个线性时不变算子的简单实例是导数

 \frac{d}{dt} \left( c_1 x_1(t) + c_2 x_2(t) \right) = c_1 x'_1(t) + c_2 x'_2(t),
 \frac{d}{dt} x(t-\tau) = x'(t-\tau).

取导数的拉普拉斯变换,得到一个简单的与拉普拉斯变换变量 s 的乘积。

 \mathcal{L}\left\{\frac{d}{dt}x(t)\right\} = s X(s)

导数的拉普拉斯变换如此简单一定程度上说明了拉普拉斯变换的用途。

另外一个简单的线性时不变算子是平均算子

 \mathcal{A}\left\{x(t)\right\} = \int_{t-a}^{t+a} x(\lambda) d \lambda .

因为积分是线性的所以它也是线性的

 \mathcal{A}\left\{c_1 x_1(t) + c_2 x_2(t) \right\}
 = \int_{t-a}^{t+a} \left( c_1 x_1(\lambda) + c_2 x_2(\lambda) \right) d \lambda
 = c_1 \int_{t-a}^{t+a} x_1(\lambda) d \lambda + c_2 \int_{t-a}^{t+a} x_2(\lambda) d \lambda
 = c_1 \mathcal{A}\left\{x_1(t) \right\} + c_2 \mathcal{A}\left\{x_2(t) \right\} .

它也是时不变的

 \mathcal{A}\left\{x(t-\tau)\right\}
 = \int_{t-a}^{t+a} x(\lambda-\tau) d \lambda
 = \int_{(t-\tau)-a}^{(t-\tau)+a} x(\xi) d \xi
 =  \mathcal{A}\{x\}(t-\tau) .

实际上,\mathcal{A} 可以写成与 box 函数 \Pi(t) 的卷积。

 \mathcal{A}\left\{x(t)\right\} = \int_{-\infty}^\infty \Pi\left(\frac{\lambda-t}{2a}\right) x(\lambda) d \lambda ,

其中 box 函数是

\Pi(t) = \left\{ \begin{matrix} 1 & |t|  1/2 \end{matrix} \right.

重要的系统特性[编辑]

因果性和稳定性是描述系统的两个重要性质。因为真实世界是因果的,因此通常要求设计的系统也是因果,以便实现。也可以构建不稳定的系统,并且这种系统在很多场合很有用。甚至也可以构建 non-real系统也可以用在non-real 系统中,并且在很多场合也是非常有用的。

因果性[编辑]

如果系统输出只与当前以及过去的输入有关,那么该系统就是因果系统。因果性的充分必要条件是

h(t) = 0 \quad \forall t < 0,

其中 h(t) 是冲激响应。由于拉普拉斯变换的逆变换不唯一,所以通常不能根据拉普拉斯变换确定系统的因果性。只有在确定了系统的收敛域之后才能确定该系统的因果性。

稳定性[编辑]

如果系统对每个有界输入来说输出都是有界的,那么系统就是有界输入有限输出稳定的(BIBO 稳定),用数学方法表示就是如果

||x(t)||_\infty < \infty

||y(t)||_\infty < \infty

(也就是说 x(t)y(t)最大绝对值都是有界的),那么系统就是稳定的。系统稳定的充分必要条是冲激响应 h(t) 满足

||h(t)||_1 = \int_{-\infty}^\infty |h(t)| dt < \infty.

在频域中,收敛域必须包含虚轴 s=j\omega

离散时间系统[编辑]

几乎所有的连续时间系统都能找到与之对应的离散时间系统。


连续时间系统中的离散时间系统[编辑]

在许多情况下,离散时间(DT)系统实际上是较大的连续时间(CT)系统的一部分。例如,数字录音系统记录模拟声音、数字化、或许对数字信号进行处理、然后重放模拟信号。

正式场合下所研究的离散时间信号几乎总是连续时间信号的均匀采样。如果 x(t) 是一个连续时间信号,那么模数转换器将把它转换成离散时间信号 x[n]

x[n] = x(nT),

其中 T采样周期。为了保证离散信号能够忠实地表示输入信号,非常重要的一点就是需要限制输入信号的频率范围。根据采样定理,离散时间信号所包括的最大频率范围是 1/(2T)。其它频率都成为这个范围的混叠信号。

时不变和线性变换[编辑]

我们从一个冲激响应是二维函数的时变系统开始来看看时不变这个条件是如何将系统降到一维的。例如,假设输入信号是 x[n],其中 index set 是整数,即 n \in \mathbb{Z}线性算子 \mathcal{H} 表示系统在输入信号上的操作,对于这个 index set 来说合适的算子是一个二维函数

h[n_1, n_2] \mbox{ where } n_1, n_2 \in \mathbb{Z}.

由于 \mathcal{H} 是一个线性算子,系统在输入信号 x[n] 上的作用就是下面累加和所表示的线性变换

y[n_1] = \sum_{n_2=-\infty}^{\infty} h[n_1, n_2] \, x[n_2],

如果线性算子 \mathcal{H} 也是时不变的,那么

 h[n_1, n_2] = h[n_1 + m, n_2 + m]  \qquad  \forall \, m \in \mathbb{Z}.

如果取

 m = -n_2, \,

那么

h[n_1, n_2] = h[n_1 - n_2, 0]. \,

为了简化通常我们丢弃 h[n_1, n_2] 的第二个参数零,这样重叠积分现在变成了滤波中常见的卷积

y[n_1] = \sum_{n_2=-\infty}^{\infty} h[n_1 - n_2] \, x[n_2] = (h * x) [n_1].

这样,卷积和表示一个线性时不变系统在任意输入函数上所起的作用,对于类似的有限维参数,参见轮换矩阵en:circulant matrix)。

冲激响应[编辑]

如果我们给系统输入一个离散 δ函数 ,由于δ函数是一个理想的脉冲,所以系统的线性时不变变换就是冲激响应。我们用下式表示:

 (h * \delta) [n] = \sum_{m=-\infty}^{\infty} h[n - m] \, \delta [m] = h[n],

(通过δ函数 的 sifting 特性)。

注意

h[n] = h[n_1 - n_2, 0] \,\!\mbox{ where } n = n_1 - n_2,

这样 h[n] 就是系统的冲激响应。

这个冲激响应可以按照下面的方法用于得到任意输入信号的响应。再次应用 \delta[n] 的过滤特性,我们将输入信号写成δ的累加和:

x[n] = \sum_{m=-\infty}^\infty x[m] \delta[n-m].

输入经过系统变换,

\mathcal{H} x[n] = \mathcal{H} \sum_{m=-\infty}^\infty x[m] \delta[n-m]
\quad = \sum_{m=-\infty}^\infty \mathcal{H} x[m] \delta[n-m] ( \mathcal{H} 是线性的所以可以在和之间传递)
\quad = \sum_{m=-\infty}^\infty x[n] \mathcal{H} \delta[n-m] (x[m]n中是常量并且 \mathcal{H} 是线性的)
\quad = \sum_{m=-\infty}^\infty x[m] h[n-m] (根据 h[n] 的定义)

系统的所有信息都包含在冲激响应 h[n] 中。

Z变换与离散时间傅里叶变换[编辑]

例子[编辑]

一个简单的线性时不变算子的实例是延时算子 D\{x\}[n]:=x[n-1]

 D \left( c_1 x_1[n] + c_2 x_2[n] \right) = c_1 x_1[n-1] + c_2 x_2[n-1] = c_1 Dx_1[n] + c_2 Dx_2[n],
 D\{x[n-m]\} = x[n-m-1] = x[(n-1)-m] = D\{x\}[n-m]. \,

导数取 Z 变换,就变成一个简单的与 Z 相乘:

 \mathcal{Z}\left\{Dx[n]\right\} = z X(z).

差分的 Z 变幻如此简单也在一定程度上表明了 Z 变换的用途。

另外一个简单的线性时不变算子是平均算子

 \mathcal{A}\left\{x[n]\right\} = \sum_{k=n-a}^{n+a} x[k].

由于和是线性的所以它也是线性的:

 \mathcal{A}\left\{c_1 x_1[n] + c_2 x_2[n] \right\}
 = \sum_{k=n-a}^{n+a} \left( c_1 x_1[k] + c_2 x_2[k] \right)
 = c_1 \sum_{k=n-a}^{n+a} x_1[k] + c_2 \sum_{k=n-a}^{n+a} x_2[k]
 = c_1 \mathcal{A}\left\{x_1[n] \right\} + c_2 \mathcal{A}\left\{x_2[n] \right\} .

它也是时不变的:

 \mathcal{A}\left\{x[n-m]\right\}
 = \sum_{k=n-a}^{n+a} x[k-m]
 = \sum_{k'=(n-m)-a}^{(n-m)+a} x[k']
 =  \mathcal{A}\left\{x\right\}[n-m] .

重要的系统特性[编辑]

因果性和稳定性是系统的重要特性。与连续时间系统不同,我们可以实现非因果的离散时间系统。通过在系统中加入延时就很容易将非因果有限冲激响应系统变成因果系统。甚至可以构建非因果的无限冲激响应系统(参见 Vaidyanathan and Chen, 1995)。我们也可以构建不稳定的系统,这种系统在很多场合都很有用,甚至也可以构建在很多情况下非常有用的 non-real系统。

因果性[编辑]

如果系统的输出只与当前以及过去的输入有关,那么系统就是因果系统。因果性的必要且充分条件是

h[n] = 0 \ \forall n < 0,

其中 h[n] 是冲激响应。由于逆变换不是唯一的,所以通常很难从 Z 变换确定系统的因果性。如果收敛域确定,系统的因果性也就随之确定。

稳定性[编辑]

如果离散系统每个有界的输入,输出都是有界的那么系统就是有界输入输出稳定(BIBO 稳定)。用数学方法表示就是

||x[n]||_\infty < \infty

并且

||y[n]||_\infty < \infty

(也就是说 x[n]y[n]最大绝对值都是有限的),那么系统就是稳定的。必要且充分条件就是冲激响应 h[n] 满足

||h[n]||_1 = \sum_{n = -\infty}^\infty |h[n]| < \infty.

在频域中,收敛域必须包含单位圆 |z|=1

参见[编辑]