维里展开

维基百科,自由的百科全书
跳转至: 导航搜索

理想气体定律可以用压缩系数Z (compressibility factor)表示:

T是绝对温度,R是通用气体常数,v是摩尔体积。真正的气体和液体,Z偏离1,偏差取决于温度,压力和摩尔体积。其偏差最好以维里状态方程表示:

其中ρ=1/v是流体的摩尔密度,这是表示流体PρT性质的最通用的状态方程。A是第一维里系数,其值恒为1,表示在低摩尔密度下,所有流体接近理想气体。维里系数B,C,D等是温度的函数,并且通常以1/T的泰勒级数表示。压缩系数是无单位数量,表明流体偏离理想气体的程度。

维里状态方程最初由Kamerlingh Onnes[1]提出,它广泛用于替代大量PρT等温线数据。如果一个维里状态方程包含足够的维里系数和足够的温度项,那么可以它可以取代大量精密的PρT数据。这种维里状态方程的唯一优点是,它们可以在数学上取代大量的数据表,而不必理解底层的热力学。

第二和第三维里系数[编辑]

第二和第三维里系数已被广泛研究一个多世纪,许多流体已有它们的表列。最广泛的表列在Dymonds的书中[2][3]。最近,国家科学技术研究所热力学研究中心(Thermodynamics Research Center of National Institute of Science and Technology, NIST / TRC)以Web Thermo Tables(WTT)的形式发布了大量的热力学数据)[4]。在WTT-Lite版本中,可以上线查看关于150液体经过严格审查的数据。许多流体的第二和第三维里系数的表也包括在这版本中。

在Dymonds的书和WTT表中,由氩代表的第二和第三维里系数如右图所示。減縮温度和減縮维里系数都是无单位数量。大多数流体具有相同的系数曲线。

氩气的第二和第三減縮维里系数。

随着温度的降低,第二维里系数持续降低。然而,第三维里系数具有钟形。随着温度降低到临界温度,它升高到峰值,并随着温度从临界点降低到三点而迅速下降到0。由于第三维里系数理论上代表三个分子之间的排斥力,预计在较低的温度下会随着分子被压在一起而增加,所以在临界温度以下持续降低,不合乎物理學的預期。

第三维里系数临界温度以下降低的原因是计算错误。通常PρT等温线在气相中可以方便地测量。在临界温度以下,气相冷凝并与液相共存,PρT等温线变平。饱和压力不变,直到所有气体冷凝成液体,然后压力随密度增加而上升。在纯气相和纯液相之间存在一个很大的间隙,其中没有可用的压力数据(只有饱和压力)。如果仅仅分析气相中的数据,则第三维里系数变得非常小,因为PρT等温线在气相中几乎是线性的。然而,如果包括纯液相中的数据点,二阶回归法将给出相当大的第三维里系数。由此导出的第三维里系数随着温度降低而持续增加。

有些状态方程能准确预测气相和液相共存的饱和区中的PρT等温线,我们可以用这些状态方程来验证第三维里系数与1/T的函数关系。大多数状态方程可以转化为维里方程,从而可以比较它们所产生的第二和第三维里系数。

将状态方程改寫為维里方程[编辑]

大多数状态方程可以改寫為维里方程,这样就可以准确地互相评估和比较它们隐含的第二和第三维里系数。

1873年Van der Waals提出了他著名的状态方程[5], was proposed in 1873:

其中v=1/ρ是摩尔体积。我們可以将1/(v-b)扩展为泰勒级数来重新排列:

第二维里系数大致正确,因为当温度降低时它变为负值。第三和更高的维里系数与温度无关,這是不正确的,特别是在低温下。 所有随后由van der Waals方程導出的状态方程,如Dieterici[6], Berthelot[7], Redlich-Kwong[8], Peng-Robinson[9],. 等等,都受到了由1/(v-b)项的限制,在低于临界温度時不能准确地表示PρT等温线。其中许多状态方程产生正確的第二维里系数,但大多数状态方程都产生不正确的第三维里系数。

然而,由Beattie-Bridgeman[10],启迪的另一類状态方程与维里方程更密切相关,并且在气相和液相中更准确。它们可以容易地重寫成维里方程,并相互比较。 1928年提出的Beattie-Bridgeman状态方程:

其中

可以重新排列:

该状态方程的第二维里系数与实验数据非常接近。然而,第三个维里系数的負號是错误的。因此,它不能正確表示接近临界温度上下的等温线。

1940年的Benedict-Webb-Rubin状态方程[11]就有显着的改善,特別是在低于临界温度的等温线:

Starling [12] 在1972年提出了更多的改进:

右图是根据Starling[12]的減縮温度與第二和第三減縮维里系数的曲线:

根据Starling減縮温度与減縮第二和第三维里系数。

最后两个方程中的指数项是令人意外的,而且不合乎维里级数序列。然而,随着ρ增加,這指数项收敛得非常快,如果我们在它的泰勒级数序列中仅取前两项,,并将其乘以,,则结果为.。因此,它对第三维里系数贡献了项,另一项是在第八维里系数中,可以忽略。

取代了指数项后,Benedict-Webb-Rubin與Starling方程有这种有趣的形式:

第四和第五维里系数为零。在第三维里项之后,下一个重要项是第六维里项。看起来,前三个维里项主导了流体的压缩系数,温度范围降至,,密度范围最高可达.。

还有一点值得注意的是,在1901年的Kamerlingh Onnes[1]的原始研究中,他認為第四维里系数D=0,并将更高项聚集为其维里方程中的一个残餘值。不幸的是,第三维里系数的物理意义从未被充分认识,并且它对气液平衡的影响,被其他较高维里系数所掩盖,這是"多变量优化算法"的重要缺失。

现在我们可以了解为什么Benedict-Webb-Rubin在Beattie-Bridgeman状态方程中增加复杂的指数项。 他们认识到气相中的第三维里系数很小,但在液相中必须加大。他们没有加大第三维里系数,而是添加这个奇怪的指数项,但是其唯一目的是使第三维里系数在低温度下加大。 这个指数项的泰勒级数揭示了他们的真实意图。 重新分析Starling[13])报道的数据,维里系数最好的表示公式是:

使用简单的二阶回归分析法來分析实验的PρT等温线,可以确定b和c。然后可以使用三阶回归法分析b和c来确定。去除了维里方程的前三项后的残余值,可以用来分析之值。重新分析Starling[12]报道的数据,得到的一些结果显示在下表中。这些系数都是无单位数量,因为它们都以临界摩尔体积和临界温度减缩。

Fluid
Methane 0.440 -1.171 -0.236 -0.210 0.364 -0.275 -0.014 0.396 0.0319 1.71E-03
Ethane 0.330 -0.806 -0.363 -0.378 0.553 -0.675 -0.038 0.680 0.0461 2.63E-03
Propanr 0.288 -0.706 -0.245 -0.575 0.532 -0.546 -0.308 0.843 0.0334 1.89E-02
n-butane 0.377 -0.916 -0.115 -0.610 0.547 -0.519 -0.347 0.871 0.0305 2.04E-02
i-butane 0.438 -1.051 -0.172 -0.401 0.483 -0.342 -0.021 0.538 0.0194 1.19E-03
n-pentane 0.481 -1.056 -0.166 -0.560 0.668 -0.720 -0.204 0.841 0.0411 1.17E-02
i-pentane 0.242 -0.674 -0.306 -0.520 0.815 -0.943 -0.194 0.868 0.0484 9.99E-03
n-heane 0.435 -0.636 -0.358 -0.759 0.848 -1.275 -0.105 1.120 0.0604 4.98E-03
n-heptane 0.493 -0.798 -0.636 -0.428 0.589 -0.738 -0.017 0.814 0.0508 1.21E-03
n-octane 0.600 -0.744 -0.456 -0.763 0.174 -0.197 -0.272 0.919 0.0144 1.99E-02
nitrogen 0.502 -1.380 0.092 -0.333 0.400 -0.276 -0.027 0.322 0.0279 2.72E-03
CO2 0.178 -0.044 -1.517 0.039 0.428 -0.422 -0.008 0.687 0.0490 9.52E-04
H2S 0.191 -0.927 -0.078 -0.366 1.093 -1.227 -0.001 0.577 0.0578 8.37E-05

三次维里状态方程[编辑]

去除了维里方程的最后的余值项,这个这是非常有趣而且相当准确的的三次维里方程:

它具有Van der Waals状态方程所有最好的属性,但是没有在v = b时致命的無限發散性。理论上,第二维里系数代表双分子吸引力,第三个维里项表示紧密接触的三个分子之间的排斥力。直观地,我们期望B在低温下变为负值,而C将保持正值以抵消B的影响,并且因此当ρ增加时,Z及压力都持續增高。

如前所述,这种三次维里方程具有Van der Waals状态方程的所有属性,而在v = b时没有令人尴尬的發散性。在临界状态下, B和C系数可以利用臨界条件計算出來:

and

三次维里方程可以解出:

, and :

为0.333,可以与Van del Waals状态方程解出的0.375相比。

在临界点和三相点之间是流体的饱和区域。在此区域,气相在饱和压力,和饱和温度下与液相共存。在饱和压力下,液相的摩尔体积为,,气相的摩尔体积为。相应的摩尔浓度为.。这些是计算第二和第三维里系数所需的數值。

一个正確的状态方程必须产生一个等溫線,它在時的和vg處與的水平线相交。這樣才能表現在,和下,气体与液体的平衡。的PρT等温线必须在時有三個根。此时三次维里方程可以改写为:。

它可以重新排列为:

因子实际上是根据理想气体定律的饱和气体体积,它可以命名為:

在饱和区域中,三次方程有三个根,可以写为:

扩展为:

之间的中介体积,这些三次维里方程式完全相等。根据这些方程的一次方项,可以解出

从二次方项可以解出B:

从三次方项C可以解出C:

由于许多流体都有, , 的表列,所以用这些饱和數值计算B和C是很简单的事情。這些结果与用Benedict-Webb-Rubin和Starling状态方程计算出的结果大約是一致的。然而,B和C的准确性在很大程度上取决于的测定量,及其与之间的微小差异。在低温下很难准确测量,当将这些B與C值与PρT等温线二阶回归法分析得出的值比较时,应考虑引入的测量误差。

维里状态方程现况[编辑]

随着计算机的进步,维里状态方程被滥用以表示大量的PρT数据,而不深究维里系数的物理意义。从Benedict-Webb-Rubin和Starling的状态方程来看,最好的维里状态方程可以确定是:.的形式。该方程中的第二和第三维里系数,可以使用Excel中简单的线性回归法从实验PρT数据计算出来。在删除前三个维里项之后,然后分析压缩系数Z中的残余值,以获得第六维里系数。复杂的“多变量优化”计算法是不必要的,它们的结果也是不可信任的。

每个热力学学生只要有Excel,应该能够从他研究的PρT实验数据中,解出自己的维里状态方程。我们需要很多人参与工作,因为所有的流体的维里系数,都必须用上述的维里状态方程重新分析PρT实验资料。

参考项目[编辑]

文献资料[编辑]

  1. ^ Kamerlingh Onnes H., Expression of state of gases and liquids by means of series, KNAW Proceedings, 4, 1901-1902, Amsterdam, 125-147 (1902).
  2. ^ Dymond J. D., Wilhoit R. C., Virial coefficients of pure gases and mixtures, Springer (2003).
  3. ^ Dymond J. H., Smith E. B., Virial coefficients of pure gases and mixtures. A critical compilation, Oxford University Press, 1st Edition (1969), 2nd Edition (1980).
  4. ^ Lemmon, E.W., Huber, M.L., McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0, National Institute of Standards and Technology, Standard Reference Data Program: Gaithersburg, MD, (2007).
  5. ^ Van der Waals J. D., On the continuity of the gaseous and liquid states (Doctoral dissertation). Universiteit Leiden (1873).
  6. ^ Dieterici(7), C. Dieterici, Ann. Phys. Chem. Wiedemanns Ann. 69, 685 (1899).
  7. ^ D. Berthelot, D., in Travaux et Mémoires du Bureau international des Poids et Mesures – Tome XIII (Paris: Gauthier-Villars, 1907).
  8. ^ Redlich, Otto; Kwong, J. N. S. On The Thermodynamics of Solutions, Chem. Rev. 44 (1): 233–244 (1949).
  9. ^ Peng, D. Y.; Robinson, D. B., A New Two-Constant Equation of State. Industrial and Engineering Chemistry: Fundamentals. 15: 59–64 (1976).
  10. ^ Beattie, J. A., and Bridgeman, O. C., A new equation of state for fluids, Proc. Am. Acad. Art Sci., 63, 229-308 (1928).
  11. ^ Benedict, Manson; Webb, George B.; Rubin, Louis C., An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and Their Mixtures: I. Methane, Ethane, Propane, and n-Butane, Journal of Chemical Physics, 8 (4): 334–345 (1940).
  12. ^ Starling, Kenneth E., Fluid Properties for Light Petroleum Systems, Gulf Publishing Company, p. 270 (1973).