艾里函数

维基百科,自由的百科全书
跳转至: 导航搜索

艾里函数(Ai(x)),英国英格蘭天文学家數學家喬治·比德爾·艾里命名的特殊函数,他在1838年研究光学的时候遇到了这个函数。Ai(x)的记法是Harold Jeffreys引进的。Ai(x)与相关函数Bi(x)(也称为艾里函数),是以下微分方程的解:

这个方程称为艾里方程斯托克斯方程。这是最简单的二阶线性微分方程,它有一个转折点,在这一点函数由周期性的振动转变为指数增长(或衰减)。

定义[编辑]

Ai(x)(红色)和Bi(x)(蓝色)的图像

对于实数x,艾里函数由以下的积分定义:

虽然这个函数不是绝对可积的(当t趋于+∞时积分表达式不趋于零),这个广义积分还是收敛的,因为它快速振动的正数和负数部分倾向于互相抵消(这可以用分部积分法来检验)。

把:求导,我们可以发现它满足以下的微分方程:

这个方程有两个线性独立的解。除了:以外,另外一个解称为第二艾里函数,记为。它定义为当x趋于−∞时,振幅与相等,但相位与相差 的函数:

性质[编辑]

时,:和:以及它们的导数的值为:

在这里,:表示伽玛函数。可以推出Ai(x)和Bi(x)的朗斯基行列式

x是正数时,Ai(x)是正的凸函数,指数衰减为零,Bi(x)也是正的凸函数,但呈指数增长。当x是负数时,Ai(x)和Bi(x)在零附近振动,其频率逐渐上升,振幅逐渐下降。这可以由以下艾里函数的渐近公式推出。

渐近公式[编辑]

x趋于+∞时,艾里函数的渐近表现为:

而对于负数方向的极限,则有:

这些极限的渐近展开式也是可以得到的[1]

自变量是复数时的情形[编辑]

我们可以把艾里函数的定义扩展到整个复平面:

其中积分路径从辐角为-(1/3)π的无穷远处的点开始,在辐角为(1/3)π的无穷远处的点结束。此外,我们也可以用微分方程来把Ai(x)和Bi(x)延拓为复平面上的整函数

以上Ai(x)的渐近公式在复平面上也是正确的,如果取主值为x2/3,且x不在负的实数轴上。Bi(x)的公式也是正确的,只要x位于扇形{xC : |arg x| < (1/3)π−δ}内,对于某个正数δ。最后,Ai(−x)和Bi(−x)是正确的,如果x位于扇形{xC : |arg x| < (2/3)π−δ}内。

从艾里函数的渐近表现可以推出,Ai(x)和Bi(x)在负的实数轴上都有无穷多个零点。Ai(x)在复平面内没有其它零点,而Bi(x)在扇形{zC : (1/3)π < |arg z| < (1/2)π}内还有无穷多个零点。

图像[编辑]

AiryAi Real Surface.png AiryAi Imag Surface.png AiryAi Abs Surface.png AiryAi Arg Surface.png
AiryAi Real Contour.svg AiryAi Imag Contour.svg AiryAi Abs Contour.svg AiryAi Arg Contour.svg


AiryBi Real Surface.png AiryBi Imag Surface.png AiryBi Abs Surface.png AiryBi Arg Surface.png
AiryBi Real Contour.svg AiryBi Imag Contour.svg AiryBi Abs Contour.svg AiryBi Arg Contour.svg

与其它特殊函数的关系[编辑]

当自变量是正数时,艾里函数与变形贝塞尔函数之间有以下的关系:

在这里,I±1/3K1/3是方程的解。

当自变量是负数时,艾里函数与贝塞尔函数之间有以下的关系:

在这里,J±1/3是方程的解。

Scorer函数的解,它也可以用艾里函数来表示:

参考文献[编辑]

  1. ^ 参看Abramowitz and Stegun, 1954 和 Olver, 1974。
  • Milton Abramowitz and Irene A. Stegun (1954). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, (See §10.4). National Bureau of Standards.
  • Airy (1838). On the intensity of light in the neighbourhood of a caustic. Transactions of the Cambridge Philosophical Society, 6, 379–402.
  • Olver (1974). Asymptotics and Special Functions, Chapter 11. Academic Press, New York.
  • Harold Richard Suiter. Star Testing Astronomical Telescopes: A Manual for Optical Evaluation and Adjustment. Richmond, VA: Willmann-Bell. 1994. ISBN 978-0-943396-44-6. 含有许多图像

外部链接[编辑]