質心

维基百科,自由的百科全书
跳转至: 导航搜索

質心barycenterbarycentre,源自希臘的βαρύ-ς heavy + κέντρ-ον centre[1]),是兩個或多個互繞物體的共同質量中心(Center of mass),或是它們彼此互相環繞著的一個點。這在天文學天文物理上是很重要的一個觀念。從一個物體的質心轉移一個距離至彼此的質心,可以簡化成二體問題來進行計算。

在兩個天體當中,有一個比另一個大許多的情況下(在相對封閉的環境),質心通常會位於質量較大的天體之內。因而較小的天體會在軌道上繞著共同的質心運動,而較大的僅僅只會略微"抖動"。地月系統就是這樣的狀況,倆著的質心距離地球的中心4,671公里,而地球的半徑是6,378公里。當兩個天體的質量差異不大時,質心通常會介於兩者之間,而這兩個天體會呈現互繞的現象。冥王星和它的衛星夏戎,還有許多雙小行星聯星,都是這種情況的例子。木星太陽的質量相差雖然超過1,000倍,但因為它們之間的距離較大,也是這一類型的例子[來源請求]

在天文學,質心座標是非轉動座標,其原點是兩個或多個天體的質心所在。國際天球參考系統是質心座標之一,它的原點是太陽系的質心所在之處。

在幾何學,質心等同於重心,是二維形狀的幾何中心

二體問題[编辑]

新視野號所見冥王星和它的衛星夏戎的系統的質心。

性质[编辑]

質心不一定要在有重力場的系統中才會有意義,而重心則否。值得注意的是,除非重力場是均勻的,否則同一物質系統的質心與重心通常不在同一假想點上。对于密度均匀、形状对称分布的物体,其质心位于其几何中心处[2]

在两质点系统中,取质心为原点,两质点连线为x轴,则两质点坐标与质量有如下关系:

[2]

例子[编辑]

雙星互繞時它們的質心位置:

Orbit1.gif
兩顆星體質量差不多,例如休神星
Orbit2.gif
兩顆星體質量不同,例如冥王星冥衛一
Orbit3.gif
兩顆星體質量有很大的不同,例如地球月球
Orbit4.gif
兩顆星體質量有極大的不同,例如太陽地球
Orbit5.gif
兩顆星體以橢圓軌道互繞,此狀況通常稱為聯星

重心[编辑]

重力作用的平均位置,定義為各質點相對於重心(質心)的位置向量乘上各質點的重力之和(合力矩)為零。

均勻重力場[编辑]

在地球表面附近,重力場可被認定為均勻且平行向下,所以重心會等同於質心。 在物理學,使用「質心」來表示質量分布的好處,從以合力來考慮連續體的重力可以看出。考虑一个体积为V的体系(不一定是刚体),并设在物体内位置矢量为r的点的密度为ρ(r)。在均匀的重力场中,每个点r的场的作用力f由下式给出:

其中dm是在點r的質量,g 是重力加速度,以及k 是定義垂直方向的單位向量。 在这个体系中选择位置矢量为R的点为参考点,计算出點r所受的合力

以及點r相对點R合力矩:

如果这个参考点R正好选在质心,则有

这就意味着合力矩T=0。因为其合力矩为零,可以视为体系所有的质量集中于质心,而没有体系自身转动的效应。

非均勻重力場[编辑]

常用於天體力學

平行場

(以下為未翻譯內容,歡迎協助翻譯)

參見[编辑]

参考资料[编辑]

  1. ^ Oxford English Dictionary, Second Edition.
  2. ^ 2.0 2.1 赵凯华 罗蔚饮. 胡凯飞, 编. 新概念物理教程.力学 第二版. 北京: 高等教育出版社. 2004年7月: 124. ISBN 978-7-04-015201-2. 
  3. ^ Beatty 2006, pp. 45.
  4. ^ Beatty 2006,第48页; Jong & Rogers 1995,第213页.
  5. ^ Beatty 2006, pp. 47–48.
  6. ^ Asimov 1988,第77页; Frautschi等 1986,第269页.
  7. ^ Symon 1964,第259–260页; Goodman & Warner 2001,第117页; Hamill 2009,第494–496页.
  8. ^ Symon 1964, pp. 260, 263–264.
  9. ^ Symon 1964, p. 260.

外部链接[编辑]