透光帶

维基百科,自由的百科全书
(重定向自透光带
跳到导航 跳到搜索
水生层
浮游生物界
真光层
  表層帶英语Epipelagic
無光帶英语Aphotic zone
  中層帶
  半深海带
  深海带
  超深渊带
底层区
底棲帶
水層英语Stratification (water)
密度躍層英语Pycnocline
等密度線英语Isopycnal
化學躍層英语Chemocline
  鹽躍層英语Halocline
溫度躍層英语Thermocline
  溫鹽環流
海洋棲息地英语Marine habitats
湖泊分層英语Lake stratification
水域生態系英语Aquatic ecosystem
野生漁業英语Wild fisheries


透光帶(英語:Photic zoneEuphotic ZoneSunlight zone),又名真光层表層洋帶或者透光層[1],是指湖泊海洋中, 光度足以供浮游植物行光合作用的深度範圍,大約從海表面至水深100〜200 m之間,這層水體受大氣層和陽光的影響,水溫常有明顯的季節性變動,具有基礎生產力,也是各類生物密度最高的水層。[2] 當深度達到200米的時候,可見光已經基本被吸收殆盡,200米以上的這一片“光照區”在海洋學中被稱為透光層。透光層是海洋光合作用的生物的主要聚集區。[3] 透光層的深度受水體水質所影響,在混沌的水體中,透光層可能少於1公尺;在乾淨的水體中卻可達到50公尺。[4]从大气-水界面开始,真光层一直延伸到光线亮度降低到表面亮度1%的区域(亦称作“真光层深度”)。

浮游生物[编辑]

垂直分布浮游植物由于进行光合作用,仅分布在海洋有光照的上层(约0~200米,称为真光层)。蓝藻大多分布于真光层的上部,硅藻则可分布在整个真光层。浮游动物在上、中、下各个水层都有分布,但种类和数量互不相同。[5] 束毛藻主要分布在热带和亚热带贫营养盐海域的表层水面,其环境特点为:水团相对稳定,水域营养盐浓度较低,光的透过率较高。通常在边界涌流(boundary current),如墨西哥湾涌流,黑潮涌流(Kuroshio current)和热带海域泻湖(lagoon)水域束毛 藻的生物量较大[6]。束毛藻能够在营养贫乏的表层水域有较高的生物量主要是因为:束毛藻能够将空气中的氮气转化成化合态氮为自身提供营养[7],由于束毛藻细胞中含有气泡为其提供浮力使藻体能浮于表层水域,同时由于细胞具有特殊的光合结构,使束毛藻能在光照度较强的透光层中生长繁殖。[8]。在海洋真光层生态系统中束毛藻群落通常提供其他生物(如硅藻,甲藻,原生动物,水螅类,桡足类)生长的良好环境,并为其他生物提供有机营养。[9]

營養鹽[编辑]

铁在营养盐含量较高,叶绿素含量较低的海域对初级生产力起主要限制作用,铁主要通过大气的沉降作用进入海洋的真光层水域。[10]

在生物地球化學循環中的作用[编辑]

海洋真光层中氮营养的输入主要有两个来源:生物固氮和由上升流垂直输入的硝态氮,两者在真光层对 CO2 的吸收中所起的作用不尽相同,与固氮相比,上升流垂直输入硝态氮的同时伴随着二氧化碳和磷酸盐的大量输入,这就降低了对大气中二氧化碳的净吸收量。而通过生物固氮作用输入的氮则以 Redfiled 比对应海洋真光层对大气中二氧化碳的净吸收量[11]

參見[编辑]

無光層

参考文献[编辑]

  1. ^ 透光带. 全国科学技术名词审定委员会. [永久失效連結]
  2. ^ 戴昌鳳等. 臺灣區域海洋學. 國立臺灣大學出版中心. 2014: 264 [2016-09-08]. ISBN 9863500453 (中文). 
  3. ^ 李宏. 高新科技的开发(海洋与科技探索之旅 ). 青苹果数据中心. 2013 [2016-09-08] (中文). 
  4. ^ 國家教育研究院 釋義 透光層 Euphotic Zone 2002年2月 環境科學大辭典. terms.naer.edu.tw. [2016-09-08] (中文). 
  5. ^ 李宏 主編. 海洋与科技探索之旅丛书(套装共9册). 青苹果数据中心. 2015 [2016-09-08] (中文). 
  6. ^ 张燕英,董俊德,王汉奎,王友绍,张 偲,黄良民. 海洋蓝藻束毛藻的研究进展. 海洋科学. 2007, 31 (3): 84 [2016-09-08]. 1000-3096(2007)03-0084-05. 原文引用:[5] Capone D G, Zehr J P, Paerl H W, et al. Trichodesmium, aglobally significant marine Cyanobacterium[J]. Science ,1997, 276:1 221-1 229.[6] Chang J, Chiang K P, Gong G C. Seasonal variation and cross-shelf distribution of the nitrogen-fixing cyanobacterium,Trichidesmium, in southern East China Sea[J]. ContinentalShelf Research, 2000, 20: 479-492. 
  7. ^ 张燕英,董俊德,王汉奎,王友绍,张 偲,黄良民. 海洋蓝藻束毛藻的研究进展. 海洋科学. 2007, 31 (3): 84 [2016-09-08]. 1000-3096(2007)03-0084-05. 原文引用:[7] Mulholland M R, Floge S, Carpenter E J, et al. Phosphorus dynamics in cultures and natural populations of Trichodesmium spp.[J]. Mar Ecol Prog Ser , 2002,239:45-55. 
  8. ^ 张燕英,董俊德,王汉奎,王友绍,张 偲,黄良民. 海洋蓝藻束毛藻的研究进展. 海洋科学. 2007, 31 (3): 84 [2016-09-08]. 1000-3096(2007)03-0084-05. 原文引用:[5] Capone D G, Zehr J P, Paerl H W, et al. Trichodesmium, a globally significant marine Cyanobacterium[J]. Science ,1997, 276:1 221-1 229. 
  9. ^ 张燕英,董俊德,王汉奎,王友绍,张 偲,黄良民. 海洋蓝藻束毛藻的研究进展. 海洋科学. 2007, 31 (3): 84 [2016-09-08]. 1000-3096(2007)03-0084-05. 原文引用:[8] Lugomela C, Lyimo T J, Bryceson I, et al. Trichodesmium in coastal waters of Tanzania: diversity, seasonality, nitrogen and carbon fixation [J]. Hydrobiologia , 2002, 477: 1-13. 
  10. ^ 张燕英,董俊德,王汉奎,王友绍,张 偲,黄良民. 海洋蓝藻束毛藻的研究进展. 海洋科学. 2007, 31 (3): 84 [2016-09-08]. 1000-3096(2007)03-0084-05. 原文引用:[2] Capone D G, Carpenter E J. Nitrogen fixation by marine cyanobacteria: historical and global perspectives[J]. Bull Inst Oceanogr Monaco,1999, 19: 235-256. [7] Mulholland M R, Floge S, Carpenter E J, et al. Phosphorus dynamics in cultures and natural populations of Trichodesmium spp.[J]. Mar Ecol Prog Ser , 2002,239:45-55. 
  11. ^ 张燕英,董俊德,王汉奎,王友绍,张 偲,黄良民. 海洋蓝藻束毛藻的研究进展. 海洋科学. 2007, 31 (3): 84 [2016-09-08]. 1000-3096(2007)03-0084-05. 原文引用:[5] Capone D G, Zehr J P, Paerl H W, et al. Trichodesmium, aglobally significant marine Cyanobacterium[J]. Science ,1997, 276:1 221-1 229.[9] Karl D, Michaels A, Bergman B, et al. Dinitrogen fixation in the world’s oceans[J]. Biogeochemistry, 2002. 57/58:47-98.