# 配边

(W; M, N)的配边

${\displaystyle \partial W=M\sqcup N}$.

## 例子

3维配边 ${\displaystyle W=\mathbb {S} ^{1}\times \mathbb {D} ^{2}-\mathbb {D} ^{3}}$${\displaystyle M=\mathbb {S} ^{2}}$ 是0-维流形；${\displaystyle N=\mathbb {S} ^{1}\times \mathbb {S} ^{1}}$ 是2-环面 （见割補理論

## 脚注

1. ^ 若M和N是${\displaystyle n}$维的，则W是${\displaystyle (n+1)}$维的，而且这是${\displaystyle (n+1)}$维的配边。

## 参考文献

• John Frank Adams, Stable homotopy and generalised homology, Univ. Chicago Press (1974).
• Anosov, Dmitri; bordism
• 迈克尔·阿蒂亚, Bordism and cobordism Proc. Camb. Phil. Soc. 57, pp. 200–208 (1961).
• Dieudonne, Jean Alexandre. A history of algebraic and differential topology.
• Kosinski, Antoni A. Differential Manifolds. Dover Publications. October 19, 2007.
• Madsen, Ib. The classifying spaces for surgery and cobordism of manifolds. 普林斯顿
• 约翰·米尔诺，A survey of cobordism theory.
• 謝爾蓋·彼得羅維奇·諾維科夫, Methods of algebraic topology from the point of view of cobordism theory, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 855–951.
• 列夫·庞特里亚金, Smooth manifolds and their applications in homotopy theory American Mathematical Society Translations, Ser. 2, Vol. 11, pp. 1–114 (1959).
• 丹尼尔·奎伦, On the formal group laws of unoriented and complex cobordism theory Bull. Amer. Math. Soc., 75 (1969) pp. 1293–1298.
• Douglas Ravenel, Complex cobordism and stable homotopy groups of spheres, Acad. Press (1986).
• Yuli Rudyak Cobordism.
• Yuli B. Rudyak, On Thom spectra, orientability, and (co)bordism, Springer (2008).
• Robert E. Stong, Notes on cobordism theory, Princeton Univ. Press (1968).
• Taimanov, Iskander. Topological library. Part 1: cobordisms
• 勒内·托姆, Quelques propriétés globales des variétés différentiables, Commentarii Mathematici Helvetici 28, 17-86 (1954).
• Wall, C. T. C. Determination of cobordism ring. Annals of Mathematics（数学年刊
• Bordism on the Manifold Atlas.
• B-Bordism Archive.is存檔，存档日期2012-05-29 on the Manifold Atlas.