雙七角錐

维基百科,自由的百科全书
跳转至: 导航搜索
雙七角錐
雙七角錐
雙七角錐
類別 雙錐體
14
21
頂點 9
歐拉特徵數 F=14, E=21, V=9 (χ=2)
面的種類 三角形×14(側面)
基底為七邊形
面的佈局英语Face configuration V4.4.7
考克斯特符號英语Coxeter-Dynkin diagram CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 7.pngCDel node.png
施萊夫利符號 { } + {7}
對稱群 D7h, [7,2], (*227), order 28
對偶 七角柱
旋轉對稱群英语Point_groups_in_three_dimensions#Rotation_groups D7, [7,2]+, (227), order 14
特性
立體圖
Prism 7.png
七角柱
(對偶多面體)

幾何學中,雙七角錐是指以七邊形做為基底的雙錐體。所有雙七角錐都有14個,21個和9個頂點[1][2]。所有雙七角錐都是十四面體

如果雙七角錐以正七邊形做為基底則可稱為雙正七角錐或正七角雙錐。每個面都是正多邊形的正七角雙錐不存在,因為正六角雙錐已經是平面了,每個面都是正多邊形的正七角雙錐將會變成七階三角形鑲嵌的一部分,因此正七角雙錐不是半正多面體。其在施萊夫利符號中用{ } + {7}表示,具有D7與D7h對稱群。

正七角雙錐能在自然界中存在,例如某些化學結構[3],如九硼離子B9有中種分子異構形為正七角雙錐[4]、有機金屬錯合物[(C7H7)V(CO)3]也具有正七角雙錐結構[5]

相關多面體與鑲嵌[编辑]

半正七邊形二面體球面多面體
對稱群英语List of spherical symmetry groups[7,2], (*722) [7,2]+, (722)
CDel node 1.pngCDel 7.pngCDel node.pngCDel 2.pngCDel node.png CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 2.pngCDel node.png CDel node.pngCDel 7.pngCDel node 1.pngCDel 2.pngCDel node.png CDel node.pngCDel 7.pngCDel node 1.pngCDel 2.pngCDel node 1.png CDel node.pngCDel 7.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 7.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 2.pngCDel node 1.png CDel node h.pngCDel 7.pngCDel node h.pngCDel 2x.pngCDel node h.png
Heptagon.svg Regular tetradecagon.svg Heptagon.svg Spherical heptagonal prism.png Spherical heptagonal hosohedron.png Spherical truncated hexagonal prism.png Spherical heptagonal antiprism.png
{7,2} t{7,2} r{7,2} 2t{7,2}=t{2,7} 2r{7,2}={2,7} rr{7,2} tr{7,2} sr{7,2}
半正對偶
CDel node f1.pngCDel 7.pngCDel node.pngCDel 2.pngCDel node.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 2.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 2.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 2.pngCDel node f1.png CDel node.pngCDel 7.pngCDel node.pngCDel 2.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node.pngCDel 2.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 2.pngCDel node f1.png CDel node fh.pngCDel 7.pngCDel node fh.pngCDel 2x.pngCDel node fh.png
Spherical heptagonal hosohedron.png Spherical dodecagonal hosohedron.png Spherical heptagonal hosohedron.png Spherical hexagonal bipyramid.png Heptagon.svg Spherical heptagonal bipyramid.png Spherical dodecagonal bipyramid.png Spherical heptagonal trapezohedron.png
V72 V142 V72 V4.4.7 V27 V4.4.7 V4.4.14 V3.3.3.7
半正对偶双棱锥
2 3 4 5 6 7 8 9 10 11 12 ...
CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 5.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 6.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 7.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 8.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 9.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 1x.pngCDel 0x.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 1x.pngCDel 1x.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 1x.pngCDel 2x.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel infin.pngCDel node.png
Biangular bipyramid.png Triangular bipyramid.png Square bipyramid.png Pentagonale bipiramide.png Hexagonale bipiramide.png Heptagonal bipyramid.png Octagonal bipyramid.png Enneagonal bipyramid.png Decagonal bipyramid.png Bicone.svg
作为球面镶嵌
Spherical digonal bipyramid.png Spherical trigonal bipyramid.png Spherical square bipyramid.png Spherical pentagonal bipyramid.png Spherical hexagonal bipyramid.png Spherical heptagonal bipyramid.png Spherical octagonal bipyramid.png Spherical enneagonal bipyramid.png Spherical decagonal bipyramid.png Spherical hendecagonal bipyramid.png Spherical dodecagonal bipyramid.png


參見[编辑]

參考文獻[编辑]

  1. ^ Heptagonal Dipyramid dmccooey.com [2014-6-23]
  2. ^ Pugh, Anthony, Polyhedra: A Visual Approach, University of California Press: 21, 27, 62, 1976, ISBN 9780520030565 .
  3. ^ Marcel Gielen, Rudolph Willem, Bernd Wrackmeyer, Fluxional Organometallic and Coordination Compounds,Physical Organometallic Chemistry, John Wiley & Sons, 2005, ISBN 9780470858448, p20
  4. ^ Pan, Li-Li, Jun Li, and Lai-Sheng Wang. "Low-lying isomers of the B9 boron cluster: The planar molecular wheel versus three-dimensional structures." The Journal of chemical physics 129.2 (2008): 024302.
  5. ^ Florian P. Pruchnik, Organometallic Chemistry of the Transition Elements, Modern Inorganic Chemistry, Springer, 1990 ,ISBN 9780306431920, PT127

外部連結[编辑]