韦伯分布

维基百科,自由的百科全书
跳到导航 跳到搜索
威布尔分布
概率密度函数
概率密度函數
累积分布函数
累積分佈函數
參數 尺度参数实数
形状参数(实数)
支撑集
概率密度函数
累積分佈函數
期望值
中位數
眾數 if
方差
偏度
峰度 见内文
信息熵
動差生成函數
特性函数

威布尔分布(Weibull distribution)是可靠性分析寿命检验的理论基础。

例如,可以使用此分布回答以下问题:

预计将在老化期间失效的项目所占的百分比是多少?例如,预计将在 8 小时老化期间失效的保险丝占多大百分比?

预计在有效寿命阶段有多少次保修索赔?例如,在该轮胎的 50,000 英里有效寿命期间预计有多少次保修索赔?

预计何时会出现快速磨损?例如,应将维护定期安排在何时以防止发动机进入磨损阶段?

历史(History)[编辑]

1. 1927年,Fréchet (1927)首先给出这一分布的定义。

2. 1933年,RosinRammler在研究碎末的分布时,第一次应用了威布尔分布(Rosin, P.; Rammler, E. (1933), "The Laws Governing the Fineness of Powdered Coal", Journal of the Institute of Fuel 7: 29 - 36.)。

3. 1951年,瑞典工程师、数学家Waloddi Weibull(1887-1979)详细解释了这一分布,于是,该分布便以他的名字命名为Weibull Distribution。

定义[编辑]

概率论统计学角度看,Weibull Distribution是连续性的概率分布,其概率密度为:

其中,x是随机变量,λ>0是比例参数(scale parameter),k>0是形状参数(shape parameter)。显然,它的累积分布函数是扩展的指数分布函数,而且,Weibull distribution与很多分布都有关系。如,当k=1,它是指数分布;k=2时,是Rayleigh distribution(瑞利分布)。

性质(Properties)[编辑]

均值(mean)[编辑]

其中,Г是伽马(gamma)函数。

方差(variance)[编辑]

矩函数(moment generating function)[编辑]

偏度(skewness)[编辑]

峰度(kurtosis)[编辑]

应用[编辑]

生存分析[编辑]

工业制造[编辑]

研究生产过程和运输时间关系

极值理论[编辑]

预测天气[编辑]

可靠性和失效分析[编辑]

雷达系统[编辑]

对接受到的杂波信号的依分布建模

拟合度[编辑]

无线通信技术中,相对指数衰减频道模型,Weibull衰减模型对衰减频道建模有较好的拟合度

量化寿险模型的重复索赔[编辑]

预测技术变革[编辑]

风速[编辑]

由于曲线形状与现实状况很匹配,被用来描述风速的分布