本页使用了标题或全文手工转换

體能鍛煉

维基百科,自由的百科全书
跳转至: 导航搜索
進行三项全能運動的選手
Confusion grey.svg
提示:本条目的主题不是運動競技競賽體育

體能鍛煉(英語:Physical exercise),又稱體能訓練體適能訓練英语:Physical Training),泛指所有通過運動方式,來達到維持與發展適當體能,增進身體健康的身體活動。它的目標有許多種,包括增強肌肉循环系统,增進運動技能與身體體能,減重或維持體重,或是只是單純的休閒等等。規律而定時的進行體能訓練有助於活化身體的免疫系統,有助於預防或改善一些被稱為文明病的疾病,例如心血管疾病2型糖尿病以及肥胖。它也可以改善心理健康,減輕憂鬱及增進對壓力的抵抗能力,改善睡眠品質,改善失眠問題。有助於形成正面的自尊

種類[编辑]

  • 有氧運動:泛指任何能運用到大量肌肉組織且能讓身體與此同時消耗比平常更多氧氣的活動[1]
    此類運動的目的之一為增強心肺功能及耐力[2]
  • 無氧運動:泛指能在短時間內促進乳酸在體內迅速生成的運動。這類的運動通常用來促進身體瞬間的爆發力。[3]
無氧運動(Anaerobic exercise)

體能鍛鍊與身心健康[编辑]

規律的運動是維持健康的關鍵之一,而且對於保持健康體重消化系統骨密度英语Bone density肌肉能力(muscle strength)、關節自由活動、生理功能、降低往後需要面臨手術治療的機率以及強化免疫系統有著顯著的貢獻。迄今許多文獻表明:規律的運動可能增加一個人的預期壽命及整體的生活品質[5]

有規律運動且其運動強度大達到大約中、中強、強的程度[d]的人,相對於沒有規律運動習慣的人,可能有較低的死亡率(mortality)、較低的老化(氧化)速度及減少體內發炎的機率。[6] [7]

要能獲得大部分運動的好處,那麼可能需要達成「在一周內達到大約3500代谢当量(MET,metabolic equivalent)」的門檻。[8]

舉例來說:一天需要達成下方所舉的例子且連續七天才能滿足「在一周內達到大約3500代谢当量」的門檻。[8]

爬樓梯達十分鐘、打掃環境達15分鐘、整理花園達20分鐘、跑步20分鐘、走路/騎腳踏車通勤達25分鐘

[8]

缺乏運動者將比對照組增加6%的機率罹患心血管疾病、7%的機率罹患糖尿病、10%的機率罹患乳癌、10%的機率罹患大腸直腸癌。(此發現與地區、國別無關。)[9]

一言以蔽之,「缺乏規律運動」約造成世界上9%的人實際壽命低於其預期壽命。[9]

心臟血管系統[编辑]

水中跑步Running in water)

運動對於心臟血管系統的益處已經被廣泛地證實。「缺乏運動」不僅為冠狀動脈疾病的獨立危險因子,且其缺乏程度與「心血管疾病」的發生率成正相關。[10]

免疫系統[编辑]

File:The J-Curve PE.png
J曲線示意圖

流行病學的文獻指出適度的運動有助於增強身體的抵抗力。「適量的運動」與「免疫力的提升」的關係可以用J曲線英语J curve來表示。適度的運動能降低29%上呼吸道感染(URTI,upper Respiratory Tract Infection)的機率。然而有些研究在運動選手選手身上發現,他們「長時間高強度的運動」與「淋巴細胞(lymphocytes)」的受迫率、「免疫細胞」的受損率及「疾病感染率」的增加有關;不過目前學界尚未就此做出結論。.[11]

慢性疾病有關的發炎反應的生物標記(biomarker)群,例如:C-反應蛋白,在數量上,「有運動習慣者」比起「沒有運動習慣者」來得少。這可能是因為運動具有抗發炎的效果。

在有心臟疾病的人身上發現,增加規律運動的習慣可以降低兩個重要的心血管疾病致病因子的血液濃度,分別是:纖維蛋白原(產生於肝臟,能轉化為纖維蛋白,當人體組織受到損壞時,起凝血作用)和C-反應蛋白。.[12]

癌症[编辑]

一個類型為系統性回顧論文分析了45篇有關運動(physical activity)與癌症存活(cancer survivorship)關聯性的論文後發現共有27篇論文支持「運動能降低癌症的致死率」的論點。[13]

表關遺傳效應(Epigenetic effects)[编辑]

規律的運動與兩個分別是惡性腫瘤抑制基因的CACNA2D3英语CACNA2D3L3MBTL英语L3MBTL的低甲基頻率(methylation frequency)成正相關。[14][15]

惡病質(Cancer cachexia)[编辑]

惡病質(Cancer cachexia)是一個多重器官(multiorganic)的疾病且與癌症的發生有關。惡病質會造成發炎、體重減輕(至少5%)和肌肉脂肪組織的莫名耗損。[16]

Exercise triggers the activation of the transcriptional coactivator英语Coactivator (genetics) peroxisome proliferator-activated receptor gamma coactivator-1α英语PGC-1α (PGC-1α), which suppresses FoxO英语FOXO- and NF-κB-dependent gene transcription during muscle atrophy that is induced by fasting or denervation; thus, PGC-1α may be a key intermediate responsible for the beneficial antiatrophic effects of physical exercise on cancer cachexia.[17][18] The exercise-induced isoform PGC-1α4, which can repress myostatin and induce IGF1 and hypertrophy, is a potential drug target for treatment of cancer cachexia.[19] Other factors, such as JUNB英语JUNB and SIRT1英语SIRT1, that maintain skeletal muscle mass and promote hypertrophy are also induced with regular physical exercise.[20][21]

註:專業內容暫時保留原文

與大腦神經元(腦功能)的關聯[编辑]

運動對於腦內神經元的影響相當大且影響範圍涵蓋大腦內部結構、大腦功能、以及認知功能 [22][23][24][25]。 大量的人體研究證明持之以恆的有氧運動(比如說:每天30分鐘的有氧運動),腦部的認知功能將有持續性的進步,且腦中基因的基因表現(gene expression)將逐漸朝健康的方向修正(健康的演化),除此之外,腦中神經元將逐漸回到富有可塑性的年輕型態,如此將使一個人無論在思考上及行為上更富有靈活英语behavior plasticity。這些進展的長遠收益包括但不限於:神經元增長英语adult neurogenesis(adult neurogenesis growth)加速、神經元的活性增加(例如:c-Fos英语c-Fos腦源性神經營養因子 BDNF在腦中訊號量的增加、增強)、更有能力應對壓力、更優的認知能力來管理自己的言行、外顯記憶[e]空間記憶(spatial memory)及工作記憶[f]的提升、腦部結構與功能的改善、與認知管理與記憶相關的神經傳導通道英语neural pathways(neural pathways)及其結構和功能的優化。[22][23] [24][25] [26][27][28][29][30][31]

有規律適度的運動對於大腦的認知功能具有許多重要的好處,其意義在於:學生可能獲得更好的學業表現英语academic performance(academic performance)、思考/做事變得更有效率、為自己的老年時期儲備認知功能、防止或治療某些與腦神經變異有關的疾病英语neurological disorder(neurological disorder)以及讓自己迎接更好的生活品質。[22] [32][33]

有適度規律地做有氧運動(比如說:跑步 running、慢跑 jogging、快步走 brisk walking、游泳和騎腳踏車等)的人通常在旨在測量一個人某些認知功能,例如:注意力管理英语attentional contro(attentional control)、衝動管理(inhibitory control)、認知彈性英语cognitive flexibility(cognitive flexibility)、工作記憶的能力與更新(working memory updating and capacity)、宣告記憶(declarative memory)、空間記憶(Spatial memory)、腦中的資訊處理速度(information processing speed)的神經心理測驗英语neuropsychological test(neuropsychological function and performance tests)中獲得較好的表現。[22][26][28][30][31]

有氧運動也是一個強效的抗憂鬱劑欣快感促進劑(euphoriant);[34][35][36][37] 所以適度且規律持續的有氧運動將有助於一個人維持良好的心情自尊[38][39]

適度且規律的有氧運動有助於改善許多中樞神經系統疾患英语central nervous system disorders的症狀,而且可能可用做治療這些疾病的附加療法英语adjunct therapy(adjunct therapy)。明確的證據指出適度且規律的有氧運動是治療重性抑鬱障礙(major depressive disorder)[32][36][40][41]以及注意力不足過動症(ADHD)的一個有效療法。[42][43] 很多臨床試驗的前期英语preclinical(preclinical)證據和臨床證據支持「若將適度且規律的有氧運動當成一種療法,則此療法能預防及治療藥物成癮(drug addiction)」。[44][45][46][47][48]

回顧許多臨床證據的結果均顯示將適度且規律的有氧運動當成某些退化性腦部疾病(neurodegenerative disorder)的附加療法是正確的,因為確實具有療效,特別是對於阿茲海默症(Alzheimer’s disease)[49][50]巴金森氏症(Parkinson's disease)。[51][52][53][54]

規律的運動能降低神經退化疾病發生的機率或惡化的速度。[52][55] 規律的運動也被提案作為腦癌(brain cancers)患者的附加療法英语adjunct therapy(adjunct therapy/add-on therapy)[56]

請參閱:Neurobiological effects of physical exercise英语Neurobiological effects of physical exercise以獲得更多相關資訊。

睡眠[编辑]

一個於西元2010年發布的系統性回顧表明:運動整體來說能提升絕大多數人的睡眠品質,並改善睡眠疾病,例如:失眠。

較佳的運動時間可能落在睡前四到八小時。雖然在任何時間運動對身體都是有益的,但如果在睡前緊接著劇烈運動則可能干擾稍後的睡眠品質。 至於「睡眠」與「運動」兩者之間更詳細的關係則尚待更多研究的成果來詮釋。[57]

根據一個2005年出爐的研究,運動是服用安眠藥最好的替代方案。畢竟「規律且適度的有氧運動」所需付出的成本(包含:金錢、可能的副作用)遠低於服用安眠藥。「規律且適度的有氧運動」帶來的益處也多於安眠藥,不僅止於助眠。[58]

過度的運動(Excessive exercise)[编辑]

過度的運動是有害的。倘若缺乏適度的休息,中風及其他循環系統出問題的機率將升高[59] ,而且肌肉組織的發育將減慢。 長期且重度的心肺運動(例如:部分挑戰各式各樣馬拉松的運動員),可能會造成心臟結痂以及心律不整等問題。 [60][61][62] 具體來說,過度的心臟動力輸出(high cardiac output)已經有證據顯示將導致左右心室的體積變大、心室壁增厚(increased ventricle wall thickness)、心臟的重量加大(greater cardiac mass)。 這些改變會進一步傷害心臟黏膜的心肌細胞,導致細胞組織結痂以及血管壁的肥厚(thickened walls)。 在這些過程中,象徵心肌細胞死亡的troponin蛋白被釋放到血液中,而這將再加重對心臟本身的負擔。 [63]

不適當的運動是弊大於利的,然而「適當」與否因人而異。許多運動(特別是:runningcycling),若未依照個人的體能狀況做調節,往往會導致嚴重的受傷。運動過程中發生的意外,也是導致受傷的一大原因。 [64] 值得一提的是,空氣汙染對於運動員所造成的傷害似乎不若前者來得大。 [65][66]

在极端个例中,运动过量造成了严重的身体机能下降。非寻常的過度使用肌肉(Unaccustomed overexertion of muscles)可能會導致橫紋肌溶解症 (damage to muscle),這種情況常見於新兵訓練 (new army recruits)。[67] 另一個危險是過度訓練英语overtraining,其定義是當訓練的「質(強度)」與「量(運動量)」超越身體的能耐而導致身體出現無法回復的傷害。過度訓練症候群的一個徵兆是「受抑制的免疫功能」,通常伴隨越發明顯的上呼吸道感染(upper respiratory tract infection, URTI)。URTI也與過度的運動(excessive exercise, ee)相關。過度的運動常見於馬拉松[68]

驟然停止原有的「過度運動」的型態,可能會引響心情。 運動必須依照一個人的生理、心理條件來做選擇與調適(節)。 有些人的關節與肌肉等組織結構足以抵禦重度的馬拉松;然而也有些人的身體強度不足以抵禦超過二十分鐘的輕度馬拉松。因此運動類型、型態的選擇及運動量皆因人而異。

過多的運動可能會導致女性的月經週期改變,引起月經關閉(俗稱閉經,amenorrhea)[69] 。 這滿嚴重的,因為這意味著該女性運動者正在以不合理的方式使自己的體能超越原有的極限[70]

營養和收操(Nutrition and recovery)[编辑]

適當的營養對於運動或維持健康來說都很重要。

When exercising, it becomes even more important to have a good diet to ensure that the body has the correct ratio of macronutrients while providing ample micronutrients, in order to aid the body with the recovery process following strenuous exercise.[71]

Active recovery is recommended after participating in physical exercise because it removes lactate from the blood more quickly than inactive recovery. Removing lactate from circulation allows for an easy decline in body temperature, which can also benefit the immune system, as an individual may be vulnerable to minor illnesses if the body temperature drops too abruptly after physical exercise.[72]

機轉(Mechanism of effects)[编辑]

中樞神經系統(Central nervous system)[编辑]

規律的體能訓練對於中樞神經系統所產生的長期且持續的效應被認為是因為運動時許多神經營養因子(e.g., 脑源性神经营养因子 BDNF、insulin-like growth factor 1(IGF-1)vascular endothelial growth factor(VEGF)、及 Glial cell line-derived neurotrophic factor(GDNF)英语Glial cell line-derived neurotrophic factor)和Glial cell line-derived neurotrophic factor(GDNF)英语Glial cell line-derived neurotrophic factor)和其他在周邊(相對於中樞神經系統血漿中的生物分子

biomolecules in peripheral blood plasma, which subsequently cross the blood–brain barrier and blood–cerebrospinal fluid barrier and bind to their associated receptors in the brain.

The persistent long-term neurobiological effects of regular physical exercise[note 1] are believed to be mediated by transient exercise-induced increases in the concentration of neurotrophic factors (e.g., BDNF, insulin-like growth factor 1(IGF-1), vascular endothelial growth factor(VEGF), and Glial cell line-derived neurotrophic factor(GDNF)英语Glial cell line-derived neurotrophic factor) and other biomolecules in peripheral blood plasma, which subsequently cross the blood–brain barrier and blood–cerebrospinal fluid barrier and bind to their associated receptors in the brain.[23][38][73][74] Upon binding to their receptors in cerebral vasculature英语cerebral vasculature and brain cells (i.e., neurons and glial cells), these biomolecules trigger intracellular signaling cascades that lead to neuroplastic biological responses – such as neurogenesis英语adult neurogenesis, synaptogenesis英语synaptogenesis, oligodendrogenesis, and angiogenesis, among others – which ultimately mediate the exercise-induced improvements in cognitive function.[23][26][73][75][76]

備註[编辑]

  1. ^ Examples of these long-term effects include: marked improvements in executive function across all cognitive domains and small or moderate improvements in multiple forms of memory;[22][23][26] increased gray matter volume in the hippocampus, prefrontal cortex, components of the basal ganglia, and other structures;[22][26][27] and increased neural efficiency and greater functional connectivity between the left and right halves of the prefrontal cortex, the hippocampus and cingulate cortex.[22][28]

備註B[编辑]


注释[编辑]

  1. ^ soft/limber
  2. ^ 比如說:劈腿與無劈腿間肢體伸展範圍上的差異。
  3. ^ 比如說:拉傷等。
  4. ^ 中度約指運動過程中感到稍微喘,不太能聊天。
  5. ^ 外顯記憶的英文名:declarative memory or explicit memory
  6. ^ English name: working memory。也可視為一種短期記憶。

參見[编辑]

參考資料[编辑]

  1. ^ 1.0 1.1 1.2 National Institutes of Health, National Heart, Lung, and Blood Institute. Your Guide to Physical Activity and Your Heart (PDF). U.S. Department of Health and Human Services. June 2006. 
  2. ^ Wilmore J.; Knuttgen H. Aerobic Exercise and Endurance Improving Fitness for Health Benefits. The Physician and Sports medicine. 2003, 31 (5): 45. doi:10.3810/psm.2003.05.367. 
  3. ^ Medbo, JI; Mohn, AC; Tabata, I; Bahr, R; Vaage, O; Sejersted, OM. Anaerobic capacity determined by maximal accumulated O2 deficit. Journal of Applied Physiology. January 1988, 64 (1): 50–60 [14 May 2011]. 
  4. ^ O'Connor D.; Crowe M.; Spinks W. Effects of static stretching on leg capacity during cycling. Turin. 2005, 46 (1): 52–56. 
  5. ^ Gremeaux, V; Gayda, M; Lepers, R; Sosner, P; Juneau, M; Nigam, A. Exercise and longevity.. Maturitas. December 2012, 73 (4): 312–7. PMID 23063021. doi:10.1016/j.maturitas.2012.09.012. 
  6. ^ Department Of Health And Human Services, United States. Physical Activity and Health. United States Department of Health. 1996. ISBN 9781428927940. 
  7. ^ Woods, Jeffrey A.; Wilund, Kenneth R.; Martin, Stephen A.; Kistler, Brandon M. Exercise, Inflammation and Aging. Aging and Disease. 2011-10-29, 3 (1): 130–140. ISSN 2152-5250. PMC 3320801. PMID 22500274. 
  8. ^ 8.0 8.1 8.2 Kyu, Hmwe H; Bachman, Victoria F; Alexander, Lily T; Mumford, John Everett; Afshin, Ashkan; Estep, Kara; Veerman, J Lennert; Delwiche, Kristen; Iannarone, Marissa L; Moyer, Madeline L; Cercy, Kelly; Vos, Theo; Murray, Christopher J L; Forouzanfar, Mohammad H. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ (systematic review: secondary source). 9 August 2016: i3857. doi:10.1136/bmj.i3857. 
  9. ^ 9.0 9.1 Lee, I-Min; Shiroma, Eric J; Lobelo, Felipe; Puska, Pekka; Blair, Steven N; Katzmarzyk, Peter T. Impact of Physical Inactivity on the World’s Major Non-Communicable Diseases. Lancet. 2012-07-21, 380 (9838): 219–229. ISSN 0140-6736. PMC 3645500. PMID 22818936. doi:10.1016/S0140-6736(12)61031-9. 
  10. ^ Physical Activity and Health. Diane Publishing. 1996. 
  11. ^ Goodman, C. C.; Kapasi, Z. F. The effect of exercise on the immune system. Rehabilitation Oncology. 2002. 
  12. ^ Swardfager W. Exercise intervention and inflammatory markers in coronary artery disease: a meta-analysis.. Am. Heart J. (systematic review: secondary source). 2012, 163 (4): 666–76. PMID 22520533. doi:10.1016/j.ahj.2011.12.017. 
  13. ^ Ballard-Barbash R, Friedenreich CM, Courneya KS, Siddiqi SM, McTiernan A, Alfano CM. Physical Activity, Biomarkers, and Disease Outcomes in Cancer Survivors: A Systematic Review. JNCI Journal of the National Cancer Institute (systematic review: secondary source). 2012, 104 (11): 815–840. PMC 3465697. PMID 22570317. doi:10.1093/jnci/djs207. 
  14. ^ Yuasa Y, Nagasaki H, Akiyama Y, Hashimoto Y, Takizawa T, Kojima K, 等. DNA methylation status is inversely correlated with green tea intake and physical activity in gastric cancer patients. Int. J. Cancer. 2009, 124 (11): 2677–82. PMID 19170207. doi:10.1002/ijc.24231. 
  15. ^ Zeng H, Irwin ML, Lu L, Risch H, Mayne S, Mu L, Deng Q, Scarampi L, Mitidieri M, Katsaros D, Yu H. Physical activity and breast cancer survival: an epigenetic link through reduced methylation of a tumor suppressor gene L3MBTL1. Breast Cancer Res Treat. May 2012, 133 (1): 127–35. PMID 21837478. doi:10.1007/s10549-011-1716-7. 
  16. ^ Evans WJ, Morley JE, Argiles J, Bales C, Baracos V, Guttridge D, 等. Cachexia: a new definition. Clin Nutr. 2008, 27 (6): 793–799. PMID 18718696. doi:10.1016/j.clnu.2008.06.013. 
  17. ^ Sandri M, 等. PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc. Natl. Acad. Sci. USA. 2006, 103 (44): 16260–16265. PMC 1637570. PMID 17053067. doi:10.1073/pnas.0607795103. 
  18. ^ Brault J. J.; Jespersen J. G.; Goldberg A. L. Peroxisome proliferator-activated receptor γ coactivator 1α or 1β overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy. J. Biol. Chem. 2010, 285 (25): 19460–19471. PMC 2885225. PMID 20404331. doi:10.1074/jbc.m110.113092. 
  19. ^ Ruas J. L.; 等. A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell. 2012, 151 (6): 1319–1331. doi:10.1016/j.cell.2012.10.050. 
  20. ^ Vissing K, 等. Effect of resistance exercise contraction mode and protein supplementation on members of the STARS signalling pathway. J. Physiol. 2013, 591 (15): 3749–3763. doi:10.1113/jphysiol.2012.249755. 
  21. ^ Ferrara N, 等. Exercise training promotes SIRT1 activity in aged rats. Rejuven. Res. 2008, 11: 139–150. doi:10.1089/rej.2007.0576. 
  22. ^ 22.0 22.1 22.2 22.3 22.4 22.5 22.6 Erickson KI, Hillman CH, Kramer AF. Physical activity, brain, and cognition. Current Opinion in Behavioral Sciences. August 2015, 4: 27–32. doi:10.1016/j.cobeha.2015.01.005. 
  23. ^ 23.0 23.1 23.2 23.3 23.4 Paillard T, Rolland Y, de Souto Barreto P. Protective Effects of Physical Exercise in Alzheimer's Disease and Parkinson's Disease: A Narrative Review. J Clin Neurol (literature review: secondary source.). July 2015, 11 (3): 212–219. PMC 4507374. PMID 26174783. doi:10.3988/jcn.2015.11.3.212. 
  24. ^ 24.0 24.1 McKee AC, Daneshvar DH, Alvarez VE, Stein TD. The neuropathology of sport. Acta Neuropathol. January 2014, 127 (1): 29–51. PMC 4255282. PMID 24366527. doi:10.1007/s00401-013-1230-6. 
  25. ^ 25.0 25.1 Denham J, Marques FZ, O'Brien BJ, Charchar FJ. Exercise: putting action into our epigenome. Sports Med. February 2014, 44 (2): 189–209. PMID 24163284. doi:10.1007/s40279-013-0114-1. 
  26. ^ 26.0 26.1 26.2 26.3 26.4 Gomez-Pinilla F, Hillman C. The influence of exercise on cognitive abilities. Compr. Physiol. January 2013, 3 (1): 403–428. PMC 3951958. PMID 23720292. doi:10.1002/cphy.c110063. 
  27. ^ 27.0 27.1 Erickson KI, Leckie RL, Weinstein AM. Physical activity, fitness, and gray matter volume. Neurobiol. Aging. September 2014,. 35 Suppl 2: S20–528 [9 December 2014]. PMC 4094356. PMID 24952993. doi:10.1016/j.neurobiolaging.2014.03.034. 
  28. ^ 28.0 28.1 28.2 Guiney H, Machado L. Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychon Bull Rev. February 2013, 20 (1): 73–86. PMID 23229442. doi:10.3758/s13423-012-0345-4. 
  29. ^ Erickson KI, Miller DL, Roecklein KA. The aging hippocampus: interactions between exercise, depression, and BDNF. Neuroscientist. 2012, 18 (1): 82–97. PMC 3575139. PMID 21531985. doi:10.1177/1073858410397054. 
  30. ^ 30.0 30.1 Buckley J, Cohen JD, Kramer AF, McAuley E, Mullen SP. Cognitive control in the self-regulation of physical activity and sedentary behavior. Front Hum Neurosci. 2014, 8: 747. PMC 4179677. PMID 25324754. doi:10.3389/fnhum.2014.00747. 
  31. ^ 31.0 31.1 Cox EP, O'Dwyer N, Cook R, Vetter M, Cheng HL, Rooney K, O'Connor H. Relationship between physical activity and cognitive function in apparently healthy young to middle-aged adults: A systematic review. J. Sci. Med. Sport (systematic review (secondary source)). August 2016, 19 (8): 616–628. PMID 26552574. doi:10.1016/j.jsams.2015.09.003. 
  32. ^ 32.0 32.1 Schuch FB, Vancampfort D, Rosenbaum S, Richards J, Ward PB, Stubbs B. Exercise improves physical and psychological quality of life in people with depression: A meta-analysis including the evaluation of control group response. Psychiatry Res. (meta-analysis (secondary source)). July 2016, 241: 47–54. PMID 27155287. doi:10.1016/j.psychres.2016.04.054. 
  33. ^ Pratali L, Mastorci F, Vitiello N, Sironi A, Gastaldelli A, Gemignani A. Motor Activity in Aging: An Integrated Approach for Better Quality of Life. Int. Sch. Res. Notices. November 2014, 2014: 257248. PMC 4897547. PMID 27351018. doi:10.1155/2014/257248. 
  34. ^ Cunha GS, Ribeiro JL, Oliveira AR. [Levels of beta-endorphin in response to exercise and overtraining]. Arq Bras Endocrinol Metabol. June 2008, 52 (4): 589–598. PMID 18604371 (Portuguese). 
  35. ^ Boecker H, Sprenger T, Spilker ME, Henriksen G, Koppenhoefer M, Wagner KJ, Valet M, Berthele A, Tolle TR. The runner's high: opioidergic mechanisms in the human brain. Cereb. Cortex. 2008, 18 (11): 2523–2531. PMID 18296435. doi:10.1093/cercor/bhn013. 
  36. ^ 36.0 36.1 Josefsson T, Lindwall M, Archer T. Physical exercise intervention in depressive disorders: meta-analysis and systematic review. Scand J Med Sci Sports (meta-analysis (secondary source)). 2014, 24 (2): 259–272. PMID 23362828. doi:10.1111/sms.12050. 
  37. ^ Rosenbaum S, Tiedemann A, Sherrington C, Curtis J, Ward PB. Physical activity interventions for people with mental illness: a systematic review and meta-analysis. J Clin Psychiatry (meta-analysis (secondary source)). 2014, 75 (9): 964–974. PMID 24813261. doi:10.4088/JCP.13r08765. 
  38. ^ 38.0 38.1 Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res. October 2014, 60C: 56–64. PMC 4314337. PMID 25455510. doi:10.1016/j.jpsychires.2014.10.003. 
  39. ^ Lees C, Hopkins J. Effect of aerobic exercise on cognition, academic achievement, and psychosocial function in children: a systematic review of randomized control trials. Prev Chronic Dis. 2013, 10: E174. PMC 3809922. PMID 24157077. doi:10.5888/pcd10.130010. 
  40. ^ Mura G, Moro MF, Patten SB, Carta MG. Exercise as an add-on strategy for the treatment of major depressive disorder: a systematic review. CNS Spectr. 2014, 19 (6): 496–508. PMID 24589012. doi:10.1017/S1092852913000953. 
  41. ^ Ranjbar E, Memari AH, Hafizi S, Shayestehfar M, Mirfazeli FS, Eshghi MA. Depression and Exercise: A Clinical Review and Management Guideline. Asian J. Sports Med. (tertiary source). June 2015, 6 (2): e24055. PMC 4592762. PMID 26448838. doi:10.5812/asjsm.6(2)2015.24055. 
  42. ^ Den Heijer AE, Groen Y, Tucha L, Fuermaier AB, Koerts J, Lange KW, Thome J, Tucha O. Sweat it out? The effects of physical exercise on cognition and behavior in children and adults with ADHD: a systematic literature review. J. Neural. Transm. (Vienna) (systematic review (secondary source)). July 2016. PMID 27400928. doi:10.1007/s00702-016-1593-7. 
  43. ^ Kamp CF, Sperlich B, Holmberg HC. Exercise reduces the symptoms of attention-deficit/hyperactivity disorder and improves social behaviour, motor skills, strength and neuropsychological parameters. Acta Paediatr. July 2014, 103 (7): 709–14. PMID 24612421. doi:10.1111/apa.12628. 
  44. ^ Carroll ME, Smethells JR. Sex Differences in Behavioral Dyscontrol: Role in Drug Addiction and Novel Treatments. Front. Psychiatry. February 2016, 6: 175. PMC 4745113. PMID 26903885. doi:10.3389/fpsyt.2015.00175. 
  45. ^ Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA. Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis. Neurosci Biobehav Rev. September 2013, 37 (8): 1622–1644. PMC 3788047. PMID 23806439. doi:10.1016/j.neubiorev.2013.06.011. 
  46. ^ Olsen CM. Natural rewards, neuroplasticity, and non-drug addictions. Neuropharmacology. December 2011, 61 (7): 1109–1122. PMC 3139704. PMID 21459101. doi:10.1016/j.neuropharm.2011.03.010. 
  47. ^ Linke SE, Ussher M. Exercise-based treatments for substance use disorders: evidence, theory, and practicality. Am J Drug Alcohol Abuse. 2015, 41 (1): 7–15. PMID 25397661. doi:10.3109/00952990.2014.976708. 
  48. ^ Zhou Y, Zhao M, Zhou C, Li R. Sex differences in drug addiction and response to exercise intervention: From human to animal studies. Front. Neuroendocrinol. July 2015, 40: 24–41. PMID 26182835. doi:10.1016/j.yfrne.2015.07.001. 
  49. ^ Farina N, Rusted J, Tabet N. The effect of exercise interventions on cognitive outcome in Alzheimer's disease: a systematic review. Int Psychogeriatr. January 2014, 26 (1): 9–18. PMID 23962667. doi:10.1017/S1041610213001385. 
  50. ^ Rao AK, Chou A, Bursley B, Smulofsky J, Jezequel J. Systematic review of the effects of exercise on activities of daily living in people with Alzheimer's disease. Am J Occup Ther. January 2014, 68 (1): 50–56. PMID 24367955. doi:10.5014/ajot.2014.009035. 
  51. ^ Mattson, MP. Interventions that improve body and brain bioenergetics for Parkinson's disease risk reduction and therapy. J Parkinsons Dis. 2014, 4 (1): 1–13. PMID 24473219. doi:10.3233/JPD-130335.  已忽略未知参数|author-separator= (帮助); 已忽略未知参数|author-name-separator= (帮助)
  52. ^ 52.0 52.1 Grazina, R; Massano, J. Physical exercise and Parkinson's disease: influence on symptoms, disease course and prevention. Rev Neurosci. 2013, 24 (2): 139–152. PMID 23492553. doi:10.1515/revneuro-2012-0087.  已忽略未知参数|author-separator= (帮助); 已忽略未知参数|author-name-separator= (帮助)
  53. ^ van der Kolk, NM; King, LA. Effects of exercise on mobility in people with Parkinson's disease. Mov. Disord. September 2013, 28 (11): 1587–1596. PMID 24132847. doi:10.1002/mds.25658.  已忽略未知参数|author-separator= (帮助); 已忽略未知参数|author-name-separator= (帮助)
  54. ^ Tomlinson, CL; Patel, S; Meek, C; Herd, CP; Clarke, CE; Stowe, R; 等. Physiotherapy versus placebo or no intervention in Parkinson's disease. Cochrane Database Syst Rev. September 2013, 9: CD002817. PMID 24018704. doi:10.1002/14651858.CD002817.pub4.  已忽略未知参数|author-name-separator= (帮助); 已忽略未知参数|author-separator= (帮助)
  55. ^ Blondell SJ, Hammersley-Mather R, Veerman JL. Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies. BMC Public Health. May 2014, 14: 510. PMC 4064273. PMID 24885250. doi:10.1186/1471-2458-14-510. 
  56. ^ Cormie P, Nowak AK, Chambers SK, Galvão DA, Newton RU. The potential role of exercise in neuro-oncology. Front. Oncol. April 2015, 5: 85. PMC 4389372. PMID 25905043. doi:10.3389/fonc.2015.00085. 
  57. ^ Buman, M.P., King, A.C. Exercise as a Treatment to Enhance Sleep. American Journal of Lifestyle Medicine. 2010, 31 (5): 514. doi:10.1177/1559827610375532. 
  58. ^ Youngstedt, S.D. Effects of exercise on sleep (PDF). Clin Sports Med. April 2005, 24 (2): 355–65, xi [9 April 2012]. doi:10.1016/j.csm.2004.12.003. 
  59. ^ Alexander, C. Cutting weight, losing life.. News & Observer, February 8 (ProQuest database.). 1998. 
  60. ^ Möhlenkamp S, Lehmann N, Breuckmann F, Bröcker-Preuss M, Nassenstein K, Halle M, Budde T, Mann K, Barkhausen J, Heusch G, Jöckel KH, Erbel R. Running: the risk of coronary events : Prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur. Heart J. 2008, 29 (15): 1903–10. PMID 18426850. doi:10.1093/eurheartj/ehn163. 
  61. ^ Benito B, Gay-Jordi G, Serrano-Mollar A, Guasch E, Shi Y, Tardif JC, Brugada J, Nattel S, Mont L. Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. Circulation. 2011, 123 (1): 13–22. PMID 21173356. doi:10.1161/CIRCULATIONAHA.110.938282. 
  62. ^ Wilson M, O'Hanlon R, Prasad S, Deighan A, Macmillan P, Oxborough D, Godfrey R, Smith G, Maceira A, Sharma S, George K, Whyte G. Diverse patterns of myocardial fibrosis in lifelong, veteran endurance athletes. J Appl Physiol. 2011, 110 (6): 1622–6. PMC 3119133. PMID 21330616. doi:10.1152/japplphysiol.01280.2010. 
  63. ^ O'Keefe JH, Patil HR, Lavie CJ, Magalski A, Vogel RA, McCullough PA. Potential Adverse Cardiovascular Effects from Excessive Endurance Exercise. Mayo Clinic Proceedings. 2012, 87 (6): 587–595. PMC 3538475. PMID 22677079. doi:10.1016/j.mayocp.2012.04.005. 
  64. ^ Aertsens J, de Geus B, Vandenbulcke G, Degraeuwe B, Broekx S, De Nocker L, Liekens I, Mayeres I, Meeusen R, Thomas I, Torfs R, Willems H, Int Panis L. Commuting by bike in Belgium, the costs of minor accidents. Accident Analysis and Prevention. 2010, 42 (6): 2149–2157. PMID 20728675. doi:10.1016/j.aap.2010.07.008. 
  65. ^ Int Panis, L; De Geus, Bas; Vandenbulcke, GréGory; Willems, Hanny; Degraeuwe, Bart; Bleux, Nico; Mishra, Vinit; Thomas, Isabelle; Meeusen, Romain. Exposure to particulate matter in traffic: A comparison of cyclists and car passengers. Atmospheric Environment. 2010, 44 (19): 2263–2270. doi:10.1016/j.atmosenv.2010.04.028. 
  66. ^ Jacobs L, Nawrot TS, de Geus B, Meeusen R, Degraeuwe B, Bernard A, Sughis M, Nemery B, Panis LI. Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution. Environmental Health. Oct 2010, 9 (64): 64. PMC 2984475. PMID 20973949. doi:10.1186/1476-069X-9-64. 
  67. ^ Jimenez C.; Pacheco E.; Moreno A.; Carpenter A. A Soldier's Neck and Shoulder Pain. The Physician and Sportsmedicine. 1996, 24 (6): 81–82. doi:10.3810/psm.1996.06.1384. 
  68. ^ Smith L.L. Overtraining, excessive exercise, and altered immunity, 2003.. Sports Medicine. 2003, 33 (5): 347–364. doi:10.2165/00007256-200333050-00002. 
  69. ^ Furia, John. The Female Athlete Triad. Medscape.com. 
  70. ^ http://www.listfitness.com/exercise-excessively-addiction/
  71. ^ Kimber N.; Heigenhauser G.; Spriet L.; Dyck D. Skeletal muscle fat and carbohydrate metabolism during recovery from glycogen-depleting exercise in humans. American Journal of Lifestyle Medicine. 2003, 548 (3): 919–927. doi:10.1113/jphysiol.2002.031179. 
  72. ^ Reilly T, Ekblom B. The use of recovery methods post-exercise. J. Sports Sci. June 2005, 23 (6): 619–627. PMID 16195010. doi:10.1080/02640410400021302. 
  73. ^ 73.0 73.1 Bouchard J, Villeda SA. Aging and brain rejuvenation as systemic events. J. Neurochem. 2015, 132 (1): 5–19. PMC 4301186. PMID 25327899. doi:10.1111/jnc.12969. 
  74. ^ Silverman MN, Deuster PA. Biological mechanisms underlying the role of physical fitness in health and resilience. Interface Focus. October 2014, 4 (5): 20140040. PMC 4142018. PMID 25285199. doi:10.1098/rsfs.2014.0040. 
  75. ^ Tarumi T, Zhang R. Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise. Front Physiol. January 2014, 5: 6. PMC 3896879. PMID 24478719. doi:10.3389/fphys.2014.00006. 
  76. ^ Aberg D. Role of the growth hormone/insulin-like growth factor 1 axis in neurogenesis. Endocr Dev. 2010, 17: 63–76. PMID 19955757. doi:10.1159/000262529. 

相關中文維基百科的主題: