# 高德納箭號表示法

## 簡介

${\displaystyle 3\uparrow \uparrow 2={^{2}3}=3^{3}=27}$
${\displaystyle 3\uparrow \uparrow 3={^{3}3}=3^{3^{3}}=3^{27}=7,625,597,484,987}$
${\displaystyle 3\uparrow \uparrow 4={^{4}3}=3^{3^{3^{3}}}=3^{7625597484987}\approx 1.2580143\times 10^{3638334640024}}$
${\displaystyle 3\uparrow \uparrow 5={^{5}3}=3^{3^{3^{3^{3}}}}=3^{3^{7625597484987}}\approx 3^{1.2580143\times 10^{3638334640024}}}$

${\displaystyle 3\uparrow \uparrow \uparrow 2=3\uparrow \uparrow 3={^{3}3}=3^{3^{3}}=3^{27}=7,625,597,484,987\,\!}$
${\displaystyle 3\uparrow \uparrow \uparrow 3=3\uparrow \uparrow 3\uparrow \uparrow 3={^{^{3}3}3}={^{7625597484987}3}={\begin{matrix}\underbrace {3^{3^{.^{.^{.{3}}}}}} \\7625597484987\end{matrix}}}$

## 使用指數來解釋高德納箭號表示法

${\displaystyle a\uparrow \uparrow b}$代表重複的冪，或迭代冪次，例如： ${\displaystyle a\uparrow \uparrow 4=a\uparrow (a\uparrow (a\uparrow a))=a^{a^{a^{a}}}}$

${\displaystyle a\uparrow \uparrow b=\underbrace {a^{a^{.^{.^{.{a}}}}}} _{b}}$

${\displaystyle a\uparrow \uparrow \uparrow 2=a\uparrow \uparrow a=\underbrace {a^{a^{.^{.^{.{a}}}}}} _{a}}$
${\displaystyle a\uparrow \uparrow \uparrow 3=a\uparrow \uparrow (a\uparrow \uparrow a)=\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{a}}}$
${\displaystyle a\uparrow \uparrow \uparrow 4=a\uparrow \uparrow [a\uparrow \uparrow (a\uparrow \uparrow a)]=\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{a}}}}$

${\displaystyle a\uparrow \uparrow \uparrow b=\left.\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}b}$

${\displaystyle a\uparrow \uparrow \uparrow \uparrow 2=a\uparrow \uparrow \uparrow a=\left.\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}a}$
${\displaystyle a\uparrow \uparrow \uparrow \uparrow 3=a\uparrow \uparrow \uparrow (a\uparrow \uparrow \uparrow a)=\left.\left.\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}a}$
${\displaystyle a\uparrow \uparrow \uparrow \uparrow 4=a\uparrow \uparrow \uparrow [a\uparrow \uparrow \uparrow (a\uparrow \uparrow \uparrow a)]=\left.\left.\left.\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}a}$

${\displaystyle a\uparrow \uparrow \uparrow \uparrow b=\underbrace {\left.\left.\left.\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {a^{a^{.^{.^{.{a}}}}}} _{\underbrace {\vdots } _{a}}}\right\}\cdots \right\}a} _{b}}$

## 一般化

${\displaystyle {\begin{matrix}a\uparrow ^{n}b&=&{\mbox{hyper}}(a,n+2,b)&=&a\to b\to n\\{\mbox{(Knuth)}}&&&&{\mbox{(Conway)}}\end{matrix}}}$

## 定義

 ${\displaystyle a\uparrow ^{n}b=\left\{{\begin{matrix}1,\\a^{b},\\a\uparrow ^{n-1}(a\uparrow ^{n}(b-1)),\end{matrix}}\right.}$ 若${\displaystyle b=0}$； 若${\displaystyle n=1}$； 其他。

## 參考

• Knuth, Donald E., "Coping With Finiteness", Science vol. 194 n. 4271 (Dec 1976), pp. 1235-1242.
• Robert Munafo, Large Numbers