鳶形鑲嵌

维基百科,自由的百科全书
跳转至: 导航搜索
鳶形鑲嵌
鳶形鑲嵌
歐幾里得平面
類別 半正鑲嵌對偶
平面鑲嵌
面的種類 鳶形
面的佈局英语Face configuration V3.4.6.4
考克斯特符號英语Coxeter-Dynkin diagram CDel node f1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node f1.png
施萊夫利符號 dt0,2{6,3}
康威表示法 deH
對稱群 p6m, [6,3], (*632)
對偶 小斜方截半六邊形鑲嵌
旋轉對稱群英语Point_groups_in_three_dimensions#Rotation_groups p6, [6,3]+, (632)
特性 face-transitive
Tiling Semiregular 3-4-6-4 Small Rhombitrihexagonal.svg
小斜方截半六邊形鑲嵌
(對偶多面體)

幾何學中,鳶形鑲嵌又稱六鳶形鑲嵌六階三鳶形鑲嵌平面鳶形鑲嵌是一種平面鑲嵌,其為半正鑲嵌小斜方截半六邊形鑲嵌對偶鑲嵌[1],整體由鳶形拼合,密鋪於歐氏平面。該鑲嵌的邊可以利用六邊形鑲嵌三角形鑲嵌交叉疊合構成。該鑲嵌由角度為120°、90°、60°和90°的鳶形構成。它是八個邊共線的鑲嵌之一。[2]

鳶形鑲嵌也可以稱為三角形化截半六邊形鑲嵌,因為它可以利用將截半六邊形鑲嵌三角形化,即讓三角形分割成三個三角形、六邊形分割成六個三角形,即所謂的六角化三角化截半六邊形鑲嵌,並將其正三角形與頓角三角形合併成一個鳶形而構成。另外,康威將之稱為tetrille[3]

類似的形狀[编辑]

複合三角形鑲嵌六邊形鑲嵌

Kah 3 6.png

相關多面體及鑲嵌[编辑]

半正小斜方截半家族:3.4.n.4
對稱群
*n32
[n,3]
球面鑲嵌 歐氏鑲嵌 緊湊型雙曲鑲嵌 仿緊型鑲嵌 非緊型鑲嵌
*232
[2,3]
D3h
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
P6m
*732
[7,3]
 
*832
[8,3]...
 
*∞32
[∞,3]
 
 
[iπ/λ,3]
 
小斜方截半
頂點布局
Spherical triangular prism.png
3.4.2.4
Uniform tiling 332-t02.png
3.4.3.4
Uniform tiling 432-t02.png
3.4.4.4
Uniform tiling 532-t02.png
3.4.5.4
Uniform polyhedron-63-t02.png
3.4.6.4
Uniform tiling 73-t02.png
3.4.7.4
Uniform tiling 83-t02.png
3.4.8.4
H2 tiling 23i-5.png
3.4.∞.4
正0邊形.png
3.4.∞.4
考克斯特符號英语Coxeter-Dynkin digram
施萊夫利符號
CDel node 1.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{2,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{3,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{4,3}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{5,3}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{6,3}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{7,3}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{8,3}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{∞,3}
CDel node 1.pngCDel ultra.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{iπ/λ,3}
鳶形
頂點布局
Triangular dipyramid.png
V3.4.2.4
Rhombicdodecahedron.jpg
V3.4.3.4
Deltoidalicositetrahedron.jpg
V3.4.4.4
Deltoidalhexecontahedron.jpg
V3.4.5.4
Tiling Dual Semiregular V3-4-6-4 Deltoidal Trihexagonal.svg
V3.4.6.4
Deltoidal triheptagonal til.png
V3.4.7.4
Deltoidal trioctagonal til.png
V3.4.8.4
Deltoidal triapeirogonal til.png
V3.4.∞.4

V3.4.∞.4
考克斯特符號英语Coxeter-Dynkin digram CDel node f1.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel ultra.pngCDel node.pngCDel 3.pngCDel node f1.png

參見[编辑]

參考文獻[编辑]

  1. ^ MathWorldDual tessellation的资料,作者:埃里克·韦斯坦因
  2. ^ Kirby, Matthew; Umble, Ronald, Edge tessellations and stamp folding puzzles, Mathematics Magazine, 2011, 84 (4): 283–289, MR 2843659, arXiv:0908.3257, doi:10.4169/math.mag.84.4.283 .
  3. ^ Conway, 2008, p288 table
  • Williams, Robert. The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. 1979. ISBN 0-486-23729-X.  p40
  • Grünbaum, Branko; Shephard, G. C. Tilings and Patterns. W. H. Freeman and Company. 1987. ISBN 0-7167-1193-1.  (Page 476, Tilings by polygons, #41 of 56 polygonal isohedral types by quadrangles)
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 [1] (Chapter 21, Naming Archimedean and Catalan polyhedra and tilings)