# 3的算術平方根

識別 无理数${\displaystyle \color {blue}{\sqrt {2}}}$ - ${\displaystyle \color {blue}\varphi }$ - ${\displaystyle \color {blue}{\sqrt {3}}}$ - ${\displaystyle \color {blue}{\sqrt {5}}}$ - ${\displaystyle \color {blue}\delta _{S}}$ - ${\displaystyle \color {blue}e}$ - ${\displaystyle \color {blue}\pi }$ 邊長為2的正三角形高為3的平方根 ${\displaystyle 1+{\cfrac {1}{1+{\cfrac {1}{2+{\cfrac {1}{1+{\cfrac {1}{2+{\cfrac {1}{1+\ddots }}}}}}}}}}}$[註⁠ 1] ${\displaystyle x^{2}-3=0}$ 1.7320508075688772935 1.101110110110011110101110… 1.732050807568877293527446… 1.BB67AE8584CAA73B25742D70… .mw-parser-output .hlist ul,.mw-parser-output .hlist ol{padding-left:0}.mw-parser-output .hlist li,.mw-parser-output .hlist dd,.mw-parser-output .hlist dt{margin:0;display:inline}.mw-parser-output .hlist dt:after,.mw-parser-output .hlist dd:after,.mw-parser-output .hlist li:after{white-space:normal}.mw-parser-output .hlist dt:after{content:" :"}.mw-parser-output .hlist dd:after,.mw-parser-output .hlist li:after{content:" · ";font-weight:bold}.mw-parser-output .hlist-pipe dd:after,.mw-parser-output .hlist-pipe li:after{content:" | ";font-weight:normal}.mw-parser-output .hlist-hyphen dd:after,.mw-parser-output .hlist-hyphen li:after{content:" - ";font-weight:normal}.mw-parser-output .hlist-comma dd:after,.mw-parser-output .hlist-comma li:after{content:"、";font-weight:normal}.mw-parser-output .hlist dd:last-child:after,.mw-parser-output .hlist dt:last-child:after,.mw-parser-output .hlist li:last-child:after{content:none}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li:before{content:" "counter(listitem)" ";white-space:nowrap}.mw-parser-output .hlist dd ol>li:first-child:before,.mw-parser-output .hlist dt ol>li:first-child:before,.mw-parser-output .hlist li ol>li:first-child:before{content:" ("counter(listitem)" "}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li:before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child:before,.mw-parser-output .hlist dt ol>li:first-child:before,.mw-parser-output .hlist li ol>li:first-child:before{content:" ("counter(listitem)"\a0 "}.mw-parser-output ul.cslist,.mw-parser-output ul.sslist{margin:0;padding:0;display:inline-block;list-style:none}.mw-parser-output .cslist li,.mw-parser-output .sslist li{margin:0;display:inline-block}.mw-parser-output .cslist li:after{content:"，"}.mw-parser-output .sslist li:after{content:"；"}.mw-parser-output .cslist li:last-child:after,.mw-parser-output .sslist li:last-child:after{content:none}.mw-parser-output .navbar{display:inline;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}

3的算術平方根是一个正的实数，它的平方等于3，记为：

${\displaystyle {\sqrt {3}}}$

1.73205 08075 68877 29352 74463 41505 87236 69428 05253 81038 06280 5580... （OEIS數列A002194

## 註釋

註:

1. ^ ${\displaystyle \!\ x=2+{\cfrac {1}{1+{\cfrac {1}{2+{\cfrac {1}{1+{\cfrac {1}{2+{\cfrac {1}{1+\ddots }}}}}}}}}}}$， 由觀察可知${\displaystyle x=2+{\frac {1}{1+{\frac {1}{x}}}}}$，即${\displaystyle x^{2}-2x-2=0}$， 解方程，取正根，得${\displaystyle x=1+{\sqrt {3}}}$， 因此${\displaystyle {\sqrt {3}}=x-1=1+{\cfrac {1}{1+{\cfrac {1}{2+{\cfrac {1}{1+{\cfrac {1}{2+{\cfrac {1}{1+\ddots }}}}}}}}}}}$

## 参考文献

• M. F. Jones, "22900D approximations to the square roots of the primes less than 100", Math. Comp 22 (1968): 234 - 235.
• H. S. Uhler, "Approximations exceeding 1300 decimals for ${\displaystyle {\sqrt {3}}}$, ${\displaystyle {\frac {1}{\sqrt {3}}}}$, ${\displaystyle \sin({\frac {\pi }{3}})}$ and distribution of digits in them" Proc. Nat. Acad. Sci. U. S. A. 37 (1951): 443 - 447.
• Wells, D. The Penguin Dictionary of Curious and Interesting Numbers Revised Edition. London: Penguin Group. (1997): 23