本页使用了标题或全文手工转换

草稿:真菌

维基百科,自由的百科全书
跳到导航 跳到搜索
真菌
Fungi
化石时期:泥盆纪早期–現在 (但請參閱)
Fungi collage.jpg
從左上角起順時針:
科学分类 编辑
总域: 新壁總域 Neomura
域: 真核域 Eukaryota
(未分级): 單鞭毛生物 Unikonta
(未分级): 後鞭毛生物 Opisthokonta
总界: 菌物总界 Holomycota
界: 真菌界 Fungi
L.R.T.Moore英语Royall T. Moore[1]
亞界/門/亞門[2]
芽枝霉門 Blastocladiomycota
壶菌门 Chytridiomycota
球囊菌門 Glomeromycota
微孢子蟲 Microsporidia
新美鞭菌门 Neocallimastigomycota

雙核亞界(包括半知菌

子囊菌门 Ascomycota
盘菌亚门 Pezizomycotina
酵母亞門 Saccharomycotina
外囊菌亞門 Taphrinomycotina
担子菌门 Basidiomycota
傘菌亞門 Agaricomycotina
柄锈菌亚门 Pucciniomycotina
黑粉菌亚门 Ustilaginomycotina

亞門地位未定

蟲黴菌亞門英语Entomophthoromycotina Entomophthoromycotina
梳霉亞門英语Kickxellomycotina Kickxellomycotina
毛黴菌亞門英语Mucoromycotina Mucoromycotina
捕蟲黴菌亞門英语Zoopagomycotina Zoopagomycotina

真菌(fungus)是由真核生物組成的群體,其中包括像酵母黴菌等微生物,也包括比較常見的蕈類。真菌在生物分類中,單獨分為一個(菌物界),和與植物動物相區別。

真菌和其他三種生物最大不同之處在於,真菌的細胞有以幾丁質為主要成分的細胞壁,而植物的細胞壁主要是由纖維素組成。真菌是異營生物,需要從食物中吸取養份,一般會透過分泌消化酶到環境中取得養份。真菌不會行光合作用,而有些真菌也有空气或水移动的孢子(有些帶有鞭毛)。真菌是生態系中主要的分解者。卵菌黏菌水黴菌等在構造上和真菌相似,但都不屬於真菌,而是屬於原生生物。研究真菌的學科稱為真菌學,在過去視為是植物學的一個分支,然而現在已知,真菌和動物之間的關係要比和植物之間更加親近。

雖然真菌遍及全世界,但大部分的真菌不顯眼,因為它們體積小,而且具有類似土壤及腐質的保護色。真菌在形成子實體時會比較顯眼。真菌會與植物、動物或其他真菌共生,也有些真菌會寄生。真菌在有機物質的分解中扮演著極重要的角色,對養分的循環及交換有著基礎的作用。真菌一直是人類食物的一部份(例如菇類及松露),酵母是製作麵包的原料之一,許多食物的發酵英语Fermentation in food processing(例如葡萄酒啤酒酱油)也需要用到真菌。1940年代後,真菌亦被用來製造抗生素,而現在,許多的酵素蛋白酶是由真菌所製造的,並運用在工業上。真菌也用在生物農藥上,用來控制雜草、植物疾病以及害蟲。許多真菌會分泌生物活性英语bioactive物質,稱為真菌毒素英语mycotoxin,真菌毒素可能是生物鹼或是聚酮,是對動物甚至人類是有毒性的。一些物種的真菌中含有精神药物,也可能用來作為娛樂性藥物或是傳統的宗教致幻劑。真菌會破壞材料以及建築物,其中的致病真菌也會讓人類及動物生病。因為真菌疾病(例如稻瘟病英语rice blast disease)或是食物分解作用造成的粮食損失是人類粮食安全及區域經濟上的一大問題。

真菌各門的各分類單元之間,不論是在生態、生物生命周期形態(從單細胞水生的壺菌到巨大的菇類)都有很巨大的差別。人類對真菌各門真正的生物多樣性了解得很少,預估約有220萬-380萬個物種,但目前已記述的僅有12萬種。目前已知有約8000種對植物有害,約300種對人體有害[3]。自從18、19世紀,卡爾·林奈克里斯蒂安·亨德里克·珀森伊利阿斯·馬格努斯·弗里斯等人在生物分類學上有了開創性的研究成果之後,真菌便已依其形態(如孢子顏色或微觀構造等特徵)或依生理學給予分類。在分子遺傳學上的進展,也開始在分類學上使用DNA測序,這有時會挑戰傳統依形態及其他特徵分類的類群。最近十幾年來在系統發生學上的研究已幫助真菌界重新分類,共分為一個、七個、及十個亞門

词源[编辑]

真菌的英文“fungus”直接采用了拉丁语的“fungus”(意为蘑菇)一词,曾在贺拉斯老普林尼的著作中使用。[4]而“fungus”一词又源于古希臘語的“sphongos”(σφογγος,意为海绵),用以表示蘑菇和霉菌的宏观形态和结构;[5]该词词根也用于如德语(如“Schwamm”(海绵)和Schimmel(霉菌))等其它语言中。[6]“mycology”(真菌学)一词源于希腊语“mykes”(μύκης,意为蘑菇)和“logos”(λόγος,意为邏各斯)。[7]其在英国自然学家迈尔斯·约瑟夫·贝克莱英语Miles Joseph Berkeley著作《The English Flora of Sir James Edward Smith, Vol. 5.》的使用表示对真菌的科学研究在1836年就已经开展了。[5]出现在一个特定区域全部真菌的集合称为“mycobiota英语mycobiota”(复数名词,无单数形式,意为真菌区系)。[8]

特徵[编辑]

真菌的菌丝细胞

種系發生學引进分子生物技術之前,生物分类学者认为真菌是植物界的成员,因为兩者在生活型態上有許多类似之處,例如:真菌与植物大多都是不可移动英语Sessility (zoology)的,并且有着相似的形态和生活习性;兩者都常常生长在土壤中;有些蕈類子實體在形態上與苔藓之类的植物類似。现在真菌成为一个独立于植物界与动物界的界,在大约十亿年前就有显著遗传分化英语genetic divergence[9][10]。以下列出真菌與其他界級分類元共同及不同的特徵。

共同特征:

独特的功能:

A whitish fan or funnel-shaped mushroom growing at the base of a tree.
Omphalotus nidiformis英语Omphalotus nidiformis, a bioluminescent mushroom

大多数真菌缺乏长期运输水和养分的有效系统,如许多植物中的木质部和韧皮部。为了克服这个限制,一些真菌,如蜜环,形成根状,类似和执行类似于植物根的功能。作为真核生物,真菌具有生产萜烯的生物合成途径,其使用甲羟甲酸和焦磷酸作为化学结构单元。[24][25] 植物和一些其它生物体在其叶绿体结构有一个额外的萜生物合成途径,真菌和动物没有。[26]真菌产生与植物相似或相同结构的几种次生代谢物。许多植物和真菌都产生类似的酶,但在蛋白质一级结构和其他特征中,许多植物的这些化合物和真菌酶彼此不同,这表明这些酶在真菌和植物中有着独立起源,但它们也存在着趋同进化。[25][27]

多样性[编辑]

树桩上的檐状菌Bracket fungi英语Bracket fungus

真菌广泛分布于全球各地区,可在各类自然环境中生长,其中包括许多极端环境,例如沙漠,高盐度地区[28]游離輻射区,以及深海沉积区[29]。有些种群在经历了太空旅行时的强烈紫外线宇宙線辐射后依然得以存活[30]。大多数真菌生长于陆地,不过也有少数种群部分或完全生活于水中,例如壶菌门蛙壺菌这种导致了全球范围内两栖动物群衰落的寄生性菌种。蛙壶菌的孢子可于水中游动,并以此进入两栖动物宿主体内[31]。另外一个水生真菌的例子是那些生活在海底热泉地区的种群[32]

黑木耳銀耳,兩種常見食用真菌

目前被生物分类学家们正式记录与描述的真菌种类约为12万种[33],不过真菌的全球生物多样性分布尚未通晓[33]。一份2017年的論文估计真菌界约有220万至380萬個物種[34]。在真菌学的研究历史中,对种群的区分有很多不同的方法和理论。历来占主导地位的是基于结构形态的分类法(形態學 (生物學)),例如以孢子或果实结构的大小和形状以区分种类。也有以生化或生理特征为基础的分类方法,例如以其能否代谢某些生化物质,或其对化学测试的反应来区分。以生物物种概念为基础的分类取决于该种群是否能够互相繁衍。目前学界也在利用例如DNA测序或生物演化树分析这类分子生物学工具来研究真菌的分类。这些工具大大提高了对真菌种群的分辨能力,也增加了对目前分类群组之间基因遗传多样性分析的可兼容性[35]

真菌學[编辑]

真菌學生物学的分支,是一门针对真菌进行系統研究的学科。研究的范围包括真菌的遺傳性质,生物化學结构特质,种属分類,也包括其在人类生活中的多种用途以及因其带来的危险。真菌在人类生活中的用途包括作为一种药物和食物的来源,以及作为某些宗教信仰活动中使用的宗教致幻劑。而真菌的危害则在于中毒以及感染的风险。真菌学与研究植物病害的植物病理學密切相關,因為許多植物所得疾病的主要致病因素则是真菌[36]

1729年, Pier A. Micheli首次发表对真菌的描述

人類对真菌的使用可以回朔至史前:冰人奧茨,一具完全凍結且保存完好的木乃伊在奧地利阿爾卑斯山地区被发现。这具木乃伊保存了一位生活在距今5,300年前新石器时代的男子。在他身上,人们发现了两种多孔菌木蹄層孔菌桦剥管菌英语Piptoporus betulinus。前者在当时或许被当做一种引火物(或火种),而后者或许被作为药物使用[37]。數千年以来,古人類常常在制作发酵面包以及发酵果汁的过程中食用真菌而不自知。一些远古书籍中提及了一些关于农作物被破坏的记录,这些破坏有可能便是由致病性真菌所导致的[38]

真菌學的歷史[编辑]

真菌学是一种相对较新的科学,在17世纪显微镜发展后变得系统化。虽然真菌孢子在1588年首次由吉安巴蒂斯塔·德拉·波爾塔观察到,但是在真菌学方面的开创性工作被认为是Pier Antonio Micheli在1729年出版的新品种植物[39] Micheli不仅观察到孢子,而且还表明,在适当的条件下,它们可能被诱导生长成与其相同的真菌种类。[40] 荷兰克里斯蒂安·亨德里克·珀森(Christian Hendrik Persoon,1761-1836)扩大了卡尔·林奈(Carl Linnaeus)在他的研究植物种志(1753年)中引入的二名法的使用,建立了具有这种能力的真菌的第一个分类,被认为是现代真菌学的创始人。后来,伊利阿斯·马格努斯·弗里斯(Elias Magnus Fries, 1794-1878)进一步阐述了真菌的分类,使用孢子颜色和各种微观特征,这是真菌分类学家今天仍然使用的方法。其他17-19世纪和20世纪初期的真菌学早期贡献者包括邁爾士·約瑟·貝克萊,August Carl Joseph Corda,Anton de Bary,LouisRené和Charles Tulasne兄弟,Arthur HR Buller,柯提斯·蓋茨·洛依德和Pier Andrea Saccardo。20世纪已经看到了生物化学,遗传学,分子生物学生物技术进步的真菌学现代化。DNA测序技术和系统发育分析的使用提供了真菌之间的关系和生物多样性的新见解,并且对真菌分类学中传统的基于形态的真菌的生物分类学分组提出了挑战。 [41]

形態學[编辑]

微觀結構[编辑]

Monochrome micrograph showing Penicillium hyphae as long, transparent, tube-like structures a few micrometres across. Conidiophores branch out laterally from the hyphae, terminating in bundles of phialides on which spherical condidiophores are arranged like beads on a string. Septa are faintly visible as dark lines crossing the hyphae.
An environmental isolate of 青黴菌
  1. 菌丝
  2. conidiophore英语conidiophore
  3. phialide英语phialide
  4. conidia英语conidia
  5. septa英语septum

大多数真菌以菌丝的型態生长。菌絲為圓柱狀的絲狀構造,直径大多介於 2-10  微米之間,長度則可達數厘米。菌丝的生長點位於頂點(apices),而新的菌丝主要藉由分枝(Branching)的方式生長。偶見會以頂端叉(hyphal tips fork)的方式生出两段平行生长的菌丝[42]。菌絲之間有時會接合,此過程稱為菌丝融合(Anastamosis)。融合後的菌絲會形成菌絲體,使菌絲之間可以互通有無[21]

菌丝的形态可以分為有隔菌絲(septate hypha)或合胞菌丝(coenocytic hypha)。有隔菌丝的細胞體之間有一層中隔(septa)。中隔與菌絲走向成垂直,並支撐菌絲結構。每个隔室含有一个或多个细胞核。合胞菌絲的菌丝則不分隔[43]。中隔上具有孔隙,允许细胞质细胞器通过,有时甚至允许細胞核通过,如担子囊菌门真菌中的多孔中隔(dolipore septum)[44]。 多核菌丝本质上是一种多核細胞。

许多种真菌有特化的菌丝结构用于从活体宿主处摄取养分;如寄生於植物上的物種會有一種叫做吸器(haustoria)的構造,而有些物種則有丛枝狀菌根(arbuscules),可進入到宿主细胞中,吸收营养物质[45]

真菌屬後鞭毛生物,此類生物在演化史中的祖徵為細胞具有單一後鞭毛,但真菌界中僅有壶菌门保有此一祖徵,其餘皆在演化過程中退化掉了[46]。 此外,真菌與其他真核生物相當不一樣的是,其細胞壁主要由葡聚糖(如 β-1,3-葡聚醣)及幾丁質構成[47]

巨觀結構[编辑]


真菌菌丝是肉眼可见的, 我们可以在不同物质的表面或基质看到,就像霉菌生长在潮湿的墙壁和变质的食物上。 生长在实验室的固体培养皿中的菌丝通常被称为菌群。形状和颜色 (由于孢子或生物色素不同)是鉴别和定义这些菌群的一大特征。个别菌群有着不可思议的的分布范围和年龄,例如蜜环菌粗体文字克隆菌群, 它的覆盖面积可以超过900公顷 (3.5平方英里),预估年龄9000岁左右。
子囊盘--是子囊菌有性生殖过程中重要的特殊构造。它通常是肉眼可见的,呈杯状果实体且具有子实层。一些担子菌和子囊菌的子实体可以长得很大,而且很多子实体被称为蕈類

發育和生理[编辑]

Time-lapse photography sequence of a 桃 becoming progressively discolored and disfigured
黴菌在一个腐烂的上生长。每相邻两个镜头的拍摄间隔约为12小时,拍摄共持续了6天。

The growth of fungi as hyphae on or in solid substrates or as single cells in aquatic environments is adapted for the efficient extraction of nutrients, because these growth forms have high surface area to volume ratio英语surface area to volume ratios.[48] Hyphae are specifically adapted for growth on solid surfaces, and to invade 基質 and tissues.[49] They can exert large penetrative mechanical forces; for example, many 植物病理學s, including Magnaporthe grisea英语Magnaporthe grisea, form a structure called an appressorium英语appressorium that evolved to puncture plant tissues.[50] The pressure generated by the appressorium, directed against the plant 表皮 (植物), can exceed 8百萬帕斯卡(1,200磅力每平方英寸).[50] The filamentous fungus Paecilomyces lilacinus英语Paecilomyces lilacinus uses a similar structure to penetrate the eggs of 线虫动物门s.[51]

The mechanical pressure exerted by the appressorium is generated from physiological processes that increase intracellular 膨壓 by producing osmolyte英语osmolytes such as 甘油.[52] Adaptations such as these are complemented by 纤维素酶 secreted into the environment to digest large organic molecules—such as 多糖s, 蛋白质s, and 脂類s—into smaller molecules that may then be absorbed as nutrients.[53][54][55] The vast majority of filamentous fungi grow in a polar fashion (extending in one direction) by elongation at the tip (apex) of the hypha.[56] Other forms of fungal growth include intercalary extension (longitudinal expansion of hyphal compartments that are below the apex) as in the case of some endophytic英语Endophyte fungi,[57] or growth by volume expansion during the development of mushroom 菌柄 and other large organs.[58] Growth of fungi as 多細胞生物 consisting of somatic英语Somatic (biology) and reproductive cells—a feature independently evolved in animals and plants[59]—has several functions, including the development of fruit bodies for dissemination of sexual spores (see above) and 生物薄膜s for substrate colonization and 细胞信号传送.[60]

The fungi are traditionally considered 異營生物s, organisms that rely solely on carbon fixed英语carbon fixation by other organisms for 代谢. Fungi have 演化 a high degree of metabolic versatility that allows them to use a diverse range of organic substrates for growth, including simple compounds such as 硝酸盐, , 乙酸盐, or 乙醇.[61][62] In some species the pigment 黑色素 may play a role in extracting energy from 游離輻射, such as 伽马射线. This form of "radiotrophic"英语radiotrophic fungus growth has been described for only a few species, the effects on growth rates are small, and the underlying 生物物理学 and biochemical processes are not well known.[63] This process might bear similarity to CO2 fixation英语carbon fixation via 可见光, but instead uses ionizing radiation as a source of energy.[64]

生殖[编辑]

Fungal reproduction is complex, reflecting the differences in lifestyles and genetic makeup within this diverse kingdom of organisms.[65] It is estimated that a third of all fungi reproduce using more than one method of propagation; for example, reproduction may occur in two well-differentiated stages within the 生物生命週期 of a species, the teleomorph英语teleomorph and the anamorph英语anamorph.[66] Environmental conditions trigger genetically determined developmental states that lead to the creation of specialized structures for sexual or asexual reproduction. These structures aid reproduction by efficiently dispersing spores or spore-containing 繁殖體s.

无性生殖[编辑]

无性生殖 occurs via vegetative spores (conidia英语conidium) or through 斷裂生殖. Mycelial fragmentation occurs when a fungal mycelium separates into pieces, and each component grows into a separate mycelium. Mycelial fragmentation and vegetative spores maintain 分子選殖 populations adapted to a specific 生态位, and allow more rapid dispersal than sexual reproduction.[67] The "Fungi imperfecti" (fungi lacking the perfect or sexual stage) or 半知菌 comprise all the species that lack an observable sexual cycle.[68] 半知菌 is not an accepted taxonomic clade, and is now taken to mean simply fungi that lack a known sexual stage.

有性生殖[编辑]

Sexual reproduction with 减数分裂 has been directly observed in all fungal phyla except 球囊菌門 [69] (genetic analysis suggests meiosis in Glomeromycota as well). It differs in many aspects from sexual reproduction in animals or plants. Differences also exist between fungal groups and can be used to discriminate species by morphological differences in sexual structures and reproductive strategies.[70][71] Mating experiments between fungal isolates may identify species on the basis of biological species concepts.[71] The major fungal groupings have initially been delineated based on the morphology of their sexual structures and spores; for example, the spore-containing structures, 子囊 and basidia英语basidium, can be used in the identification of ascomycetes and basidiomycetes, respectively. Some species may allow mating only between individuals of opposite mating type英语mating type, whereas others can mate and sexually reproduce with any other individual or itself. Species of the former mating system英语mating system are called heterothallic英语heterothallic, and of the latter homothallic英语homothallic.[72]

Most fungi have both a 染色體倍性 and a 染色體倍性 stage in their life cycles. In sexually reproducing fungi, compatible individuals may combine by fusing their hyphae together into an interconnected network; this process, anastomosis英语anastomosis, is required for the initiation of the sexual cycle. Many ascomycetes and basidiomycetes go through a dikaryotic英语dikaryotic stage, in which the nuclei inherited from the two parents do not combine immediately after cell fusion, but remain separate in the hyphal cells (see heterokaryosis英语heterokaryosis).[73]

Microscopic view of numerous translucent or transparent elongated sac-like structures each containing eight spheres lined up in a row
The 8-spore asci of Morchella elata, viewed with 相衬显微技术

In ascomycetes, dikaryotic hyphae of the 子实层 (the spore-bearing tissue layer) form a characteristic hook at the hyphal septum. During 细胞分裂, formation of the hook ensures proper distribution of the newly divided nuclei into the apical and basal hyphal compartments. An ascus (plural asci) is then formed, in which karyogamy英语karyogamy (nuclear fusion) occurs. Asci are embedded in an ascocarp英语ascocarp, or fruiting body. Karyogamy in the asci is followed immediately by meiosis and the production of 子囊孢子s. After dispersal, the ascospores may germinate and form a new haploid mycelium.[74]

Sexual reproduction in basidiomycetes is similar to that of the ascomycetes. Compatible haploid hyphae fuse to produce a dikaryotic mycelium. However, the dikaryotic phase is more extensive in the basidiomycetes, often also present in the vegetatively growing mycelium. A specialized anatomical structure, called a clamp connection英语clamp connection, is formed at each hyphal septum. As with the structurally similar hook in the ascomycetes, the clamp connection in the basidiomycetes is required for controlled transfer of nuclei during cell division, to maintain the dikaryotic stage with two genetically different nuclei in each hyphal compartment.[75] A 擔子果 is formed in which club-like structures known as basidia英语basidia generate haploid basidiospores英语basidiospores after karyogamy and meiosis.[76] The most commonly known basidiocarps are mushrooms, but they may also take other forms (see 真菌 section).

In glomeromycetes (formerly zygomycetes), haploid hyphae of two individuals fuse, forming a gametangium英语gametangium, a specialized cell structure that becomes a fertile 配子-producing cell. The gametangium develops into a zygospore英语zygospore, a thick-walled spore formed by the union of gametes. When the zygospore germinates, it undergoes 减数分裂, generating new haploid hyphae, which may then form asexual 孢子囊s. These sporangiospores allow the fungus to rapidly disperse and germinate into new genetically identical haploid fungal mycelia.[77]

孢子传播[编辑]

Both asexual and sexual spores or sporangiospores are often actively dispersed by forcible ejection from their reproductive structures. This ejection ensures exit of the spores from the reproductive structures as well as traveling through the air over long distances.

A brown, cup-shaped fungus with several greyish disc-shaped structures lying within
The bird's nest fungus Cyathus stercoreus英语Cyathus stercoreus

Specialized mechanical and physiological mechanisms, as well as spore surface structures (such as hydrophobin英语hydrophobins), enable efficient spore ejection.[78]例如,一些ascomycete物种的子囊结构is such that the buildup of substances英语osmolyte affecting cell volume and fluid balance enables the explosive discharge of spores into the air.[79] The forcible discharge of single spores termed ballistospores involves formation of a small drop of water (Buller's drop), which upon contact with the spore leads to its projectile release with an initial acceleration of more than 10,000 G力;[80] the net result is that the spore is ejected 0.01–0.02 cm, sufficient distance for it to fall through the gills or pores into the air below.[81] Other fungi, like the 马勃, rely on alternative mechanisms for spore release, such as external mechanical forces. The bird's nest fungi英语Nidulariaceae use the force of falling water drops to liberate the spores from cup-shaped fruiting bodies.[82] Another strategy is seen in the 鬼筆科, a group of fungi with lively colors and putrid odor that attract insects to disperse their spores.[83]

其他生殖方式[编辑]

Besides regular sexual reproduction with meiosis, certain fungi, such as those in the genera 青黴菌 and 曲霉属, may exchange genetic material via parasexual英语parasexuality processes, initiated by anastomosis between hyphae and plasmogamy英语plasmogamy of fungal cells.[84] The frequency and relative importance of parasexual events is unclear and may be lower than other sexual processes. It is known to play a role in intraspecific hybridization[85] and is likely required for hybridization between species, which has been associated with major events in fungal evolution.[86]

演化史[编辑]

相對於plants英语Evolutionary history of plantsanimals英语Evolutionary history of life來說,古老的真菌化石較少。Factors that likely contribute to the under-representation of fungal species among fossils include the nature of fungal 子實體 (真菌), which are soft, fleshy, and easily degradable tissues and the microscopic dimensions of most fungal structures, which therefore are not readily evident. Fungal fossils are difficult to distinguish from those of other microbes, and are most easily identified when they resemble extant英语Extant taxon fungi.[87] Often recovered from a permineralized英语Permineralization plant or animal host, these samples are typically studied by making thin-section preparations that can be examined with 光学显微镜 or 透射电子显微镜.[88] Researchers study compression fossil英语compression fossils by dissolving the surrounding matrix with acid and then using light or 扫描电子显微镜 to examine surface details.[89]

The earliest fossils possessing features typical of fungi date to the 古元古代 era, some 2,400百萬年前 (); these multicellular 海底生物界 organisms had filamentous structures capable of anastomosis英语anastomosis.[90] Other studies (2009) estimate the arrival of fungal organisms at about 760–1060 Ma on the basis of comparisons of the rate of evolution in closely related groups.[91] For much of the 古生代 Era (542–251 Ma), the fungi appear to have been aquatic and consisted of organisms similar to the extant 壶菌门s in having flagellum-bearing spores.[92] The evolutionary adaptation from an aquatic to a terrestrial lifestyle necessitated a diversification of ecological strategies for obtaining nutrients, including 寄生, 腐生, and the development of 互利共生 relationships such as 菌根 and lichenization.[93] Recent (2009) studies suggest that the ancestral ecological state of the 子囊菌门 was saprobism, and that independent 地衣ization events have occurred multiple times.[94]

It is presumed that the fungi colonized the land during the 寒武纪 (542–488.3 Ma), long before land plants.[95] Fossilized hyphae and spores recovered from the 奥陶纪 of Wisconsin (460 Ma) resemble modern-day Glomerales英语Glomerales, and existed at a time when the land flora likely consisted of only non-vascular 苔藓植物-like plants.[96] Prototaxites英语Prototaxites, which was probably a fungus or lichen, would have been the tallest organism of the late 志留紀. Fungal fossils do not become common and uncontroversial until the early 泥盆纪 (416–359.2 Ma), when they occur abundantly in the Rhynie chert英语Rhynie chert, mostly as 接合菌门 and 壶菌门.[95][97][98] At about this same time, approximately 400 Ma, the Ascomycota and Basidiomycota diverged,[99] and all modern of fungi were present by the Late 石炭纪 (賓夕法尼亞世, 318.1–299 Ma).[100]

地衣-like fossils have been found in the Doushantuo Formation英语Doushantuo Formation in southern China dating back to 635–551 Ma.[101] Lichens formed a component of the early terrestrial ecosystems, and the estimated age of the oldest terrestrial lichen fossil is 400 Ma;[102] this date corresponds to the age of the oldest known 子實體 (真菌) fossil, a Paleopyrenomycites species found in the Rhynie Chert.[103] The oldest fossil with microscopic features resembling modern-day basidiomycetes is Palaeoancistrus, found permineralized with a 蕨类植物 from the Pennsylvanian.[104] Rare in the fossil record are the Homobasidiomycetes (a 分類單元 roughly equivalent to the mushroom-producing species of the 傘菌綱). Two 琥珀-preserved specimens provide evidence that the earliest known mushroom-forming fungi (the extinct species Archaeomarasmius leggetti英语Archaeomarasmius leggetti) appeared during the late 白垩纪, 90 Ma.[105][106]

Some time after the 二叠纪-三叠纪灭绝事件 (251.4 Ma), a fungal spike (originally thought to be an extraordinary abundance of fungal spores in 沉積物s) formed, suggesting that fungi were the dominant life form at this time, representing nearly 100% of the available 化石 for this period.[107] However, the relative proportion of fungal spores relative to spores formed by 藻類 species is difficult to assess,[108] the spike did not appear worldwide,[109][110] and in many places it did not fall on the Permian–Triassic boundary.[111]

分類[编辑]

虽然在植物学课程和教科书中,真菌与动物比植物更密切相关,并与动物放在后鞭毛生物单系群组中。[112] 分子系统发生学分析支持真菌的单系群起源。[35] 近期基于DNA比较的研究使得真菌分类学的分类处于不断变化的状态。通常这些现行的系统发育分析基于从实验交配获得的形态特征和生物物种概念,并采用较旧且有时较不区分的方法来推翻现有的分类。[113]

在较高的分类学水平上没有独特的普遍接受的系统,从种向上,每个级别的名称变化频繁。研究人员正在努力建立和鼓励使用统一的命名法英语Botanical nomenclature[35][114] 取决于它们的生命周期和生殖方式(有性或无性)真菌种类也可以有多个科学名称。 网站如Index Fungorum英语Index Fungorum整合分类学资讯系统列出了真菌物种的当前名称(与旧的同义词相互参照)。

2007年真菌界的分类是数十名真菌学家和其他从事真菌分类学的科学家进行大规模合作研究的结果。[35] 它将真菌分类到七个,其中两个门——子囊菌门担子菌门,包含在双核亚界中,它们是最丰富和我们最熟悉的群体,包括所有的蘑菇,大多数食品腐败霉菌、致病真菌,以及啤酒,葡萄酒和面包酵母。根据菲利普·塞利尔(Philippe Silar)[115] 的作品和“真菌学:真菌综合论”("The Mycota: A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research")作为基础与应用研究实验系统的综合论文,附带的分类图描绘了主要的真菌分类单元及其与后鞭毛生物单鞭毛生物的关系。[116] 但其分支的长度与演化距离不成比例。

菌物总界

核形虫目


真菌
新美鞭菌门

新美鞭菌门



壶菌门

壺菌綱




壶菌门



Monoblepharidomycetes英语Monoblepharidomycetes





芽枝霉門

芽枝霉門




Olpidiales英语Olpidiales



Entomophthoromycota英语Entomophthoromycotina

Basidiobolomycetes英语Basidiobolomycetes



Neozygitomycetes英语Neozygitomycetes



Entomophthoromycetes英语Entomophthoromycetes




Kickxellomycota英语Kickxellomycotina

Zoopagomycetes英语Zoopagomycetes



Kickxellomycetes英语Kickxellomycetes




Mucoromycota英语Mucoromycotina

Mortierellomycetes英语Mortierellomycetes



Mucoromycetes英语Mucoromycetes



Symbiomycota
球囊菌門

球囊菌門


雙核亞界
根肿黑粉菌纲

根肿黑粉菌纲




担子菌门



子囊菌门













担子菌门
柄锈菌亚门


Tritirachiomycetes英语Tritirachiomycetes




混合菌纲



伞型束梗孢菌纲






囊担菌纲





Classiculaceae英语Classiculaceae



微球黑粉菌纲





隐团菌纲




小纺锤菌纲



柄锈菌纲







Orthomycotina
黑粉菌亚门


Monilielliomycetes



Malasseziomycetes





黑粉菌纲



外担菌纲




傘菌亞門

节担菌纲



Bartheletiomycetes




銀耳綱




花耳綱



傘菌綱







子囊菌门
外囊菌亞門


粒毛盘菌纲



Taphrinomycetes英语Taphrinomycetes



Schizosaccharomyceta

Archaeorhizomycetes英语Archaeorhizomycetes




肺孢子菌纲



Schizosaccharomycetes英语Schizosaccharomycetes





Saccharomyceta
酵母亞門

Saccharomycetes英语Saccharomycetes


盘菌亚门

?Thelocarpales



?Vezdaeales



?Lahmiales英语Lahmiales



?Triblidiales



Orbiliomycetes英语Orbiliomycetes




盘菌纲


Leotiomyceta英语Leotiomyceta
Sordariomyceta英语Sordariomyceta

Xylonomycetes




Geoglossomycetes英语Geoglossomycetes




Leotiomycetes英语Leotiomycetes




Laboulbeniomycetes英语Laboulbeniomycetes



糞殼菌綱






Dothideomyceta英语Dothideomyceta


Coniocybomycetes



Lichinomycetes英语Lichinomycetes






散囊菌綱



Lecanoromycetes英语Lecanoromycetes





Collemopsidiales




星裂菌纲



座囊菌綱











分類群[编辑]

真菌的主要群体。

真菌的主要的门(有时称为类)的分类主要根据其有性繁殖的结构的特征进行。目前,分类提出了七个门:微孢子虫门壶菌门芽枝霉门新美鞭菌门球囊菌门子囊菌门担子菌门[35]

系统分析表明微孢子蟲,一种原生生物和动物的寄生虫, 是高度衍生的内生真菌(生活在其他物种的组织当中)。[92][117] 2006年的一项研究得出微孢子虫是真菌的一个姊妹类群,也就是它们在进化上有着紧密的亲缘关系。[118] Hibbett和他的同事认为这并没有打破真菌原有的分类,而且虽然微孢子虫已经提升到的级别, 我们仍然需要进行进一步的分析来确定这个类群的进化关系。[35]

壶菌门的真菌为世界性分布。壶菌与新美鞭菌门芽枝霉門是仅有的有活动能力的真菌,产生具有单根鞭毛可在水里游动的游动孢子,这直接导致早期的生物分类学将它们分类为原生生物分子系统发生学通过它们的核糖体RNA序列推断,表明壶菌是不同于其他真菌门类的基群,由四支可能是并系群多系群的主要进化支组成。

芽枝霉門以前被认为是壶菌门的一个分类进化枝。然而,最近的分子分析和亚显微结构特征将芽枝霉门放置在与接合菌门球囊菌门双核亚界子囊菌门担子菌门)的姊妹进化枝上。芽枝霉门的真菌营腐生寄生,通过分解有机物获得营养, 而且它们是所有真核类群的寄生菌。不像它的旁系群壶菌为单倍体生命周期, 芽枝霉门为二倍体生命周期[92]

新美鞭菌门早期被归在壶菌门中。该门主要的成员为厌氧生物,生活在大型草食哺乳动物消化道和其他的富含纤维素的陆地或水域环境(如垃圾填埋场)。[119]它们缺乏线粒体但是含有起源于线粒体的氢化酶体NADH氧化成NAD+来产生氢气。如同壶菌门一样,新美鞭菌产生后方具有单鞭毛或多鞭毛的游动孢子。[35]

Microscopic view of a layer of translucent grayish cells, some containing small dark-color spheres
显微镜下的Arbuscular mycorrhiza英语Arbuscular mycorrhiza。一种亚麻根部皮层存在的丛枝菌根。
Cross-section of a cup-shaped structure showing locations of developing meiotic asci (upper edge of cup, left side, arrows pointing to two gray cells containing four and two small circles), sterile hyphae (upper edge of cup, right side, arrows pointing to white cells with a single small circle in them), and mature asci (upper edge of cup, pointing to two gray cells with eight small circles in them)
Diagram of an apothecium英语apothecium (the typical cup-like reproductive structure of Ascomycetes) showing sterile tissues as well as developing and mature asci.

球囊菌門形成菌根,一种与植物根部细胞一同形成的共生结构,同时为两种生物提供更多营养。有证据表明球囊菌与植物的合作的来源可以追溯到4亿年前。[120] 所有已知的球囊菌门物种都营无性生殖[69]之前作为接合菌门的一员,它在2001年时被提升至门的地位,接着又取代了之前的接合菌门。[121]之前分类在接合菌门的真菌被分类在球囊菌门中,或者放置到地位未定毛霉菌亚门英语Mucoromycotina梳霉亚门英语Kickxellomycotina捕虫霉菌亚门英语Zoopagomycotina虫霉菌亚门英语Entomophthoromycotina[35]该门包括之前在接合菌门中一些有名的真菌如黑根霉,还有Pilobolus英语Pilobolus可以把孢子喷射到几米高的空中。[122]与医学有关的有毛黴屬Rhizomucor英语Rhizomucor根黴

子囊菌门为真菌界中的最大类群。[123]此種真菌會於被稱為子囊的特殊袋狀結構中減數分裂,產生子囊孢子。子囊菌門下屬的物種包括羊肚菌、一些蕈類松露、單細胞生物酵母(例如酵母屬Kluyveromyces英语KluyveromycesPichia英语Pichia假丝酵母属下的物種)與許多其他絲狀真菌(包括腐生真菌、寄生真菌、地衣等共生生物等)。一些有名而重要的丝状真菌有曲霉青黴Fusarium英语Fusarium麦角菌。许多种子囊菌都只观察到了无性生殖现象(被称为无性型种), 但是分子数据分析常常能找到它们在子囊菌门里的有性型亲缘种。[124]此類絲狀真菌的孢子均產生並儲存於子囊之中。對於基因與遺傳研究而言,這一特性可以讓研究人員方便的使用已知的雙親繁育後代,故此屬於此門的真菌(例如粉色麵包黴菌)常常用於基因與遺傳學研究。[125]另外,釀酒酵母亦作為世界上第一個被全基因組測序的真核生物[126]與真核生物的模式生物,於許多真核生物相關的研究中起到重要作用。

担子菌门的真菌有性生殖时经减数分裂形成担孢子。最常见的蘑菇以及谷物的主要病原体柄锈菌黑粉菌属于这类群。其他重要的担子菌包括玉米的病原体玉米黑粉菌[127]偏利共生在人体的马拉色菌[128]和会发生伺机性感染的人类病原体新型隱球菌[129]

類真菌生物[编辑]

由于在形态和生活方式上的类似,粘菌黏菌plasmodiophorid英语plasmodiophoridacrasid英语acrasidFonticula英语Fonticulalabyrinthulid英语labyrinthulid,现在分别被分类在變形蟲門有孔蟲界古虫界後鞭毛生物不等鞭毛類),水霉(卵菌綱)以及hyphochytrid英语hyphochytrid (both 不等鞭毛類) were formerly classified in the kingdom Fungi, in groups like Mastigomycotina英语Mastigomycotina, Gymnomycota英语Gymnomycota and Phycomycetes英语Phycomycetes. The slime molds were studied also as 原生動物ns, leading to a ambiregnal英语ambiregnal, duplicated taxonomy.

与真菌不同,卵菌的細胞壁含有纤维素并缺少甲殼素。Hyphochytrids同时含有几丁质和纤维素。黏菌在同化阶段缺少细胞壁(except labyrinthulids, which have a wall of scales), and ingest nutrients by ingestion (吞噬作用, except labyrinthulids) rather than absorption (osmotrophy英语osmotrophy, as fungi, labyrinthulids, oomycetes and hyphochytrids). Neither water molds nor slime molds are closely related to the true fungi, and, therefore, 生物分类学s no longer group them in the kingdom Fungi. Nonetheless, studies of the oomycetes and myxomycetes are still often included in 真菌學 textbooks and primary research literature.[130]

The Eccrinales英语Eccrinales and Amoebidiales英语Amoebidiales are 後鞭毛生物 原生生物s, previously thought to be zygomycete fungi. Other groups now in 後鞭毛生物 (e.g., Corallochytrium英语Corallochytrium, Ichthyosporea英语Ichthyosporea) were also at given time classified as fungi. The genus Blastocystis英语Blastocystis, now in 不等鞭毛類, was originally classified as a yeast. Ellobiopsis英语Ellobiopsis, now in 囊泡虫类, was considered a chytrid. The 细菌 were also included in fungi in some classifications, as the group Schizomycetes.

The Rozellida英语Rozellida clade, including the "ex-chytrid" Rozella英语Rozella, is a genetically disparate group known mostly from environmental DNA sequences that is a sister group to fungi. Members of the group that have been isolated lack the chitinous cell wall that is characteristic of fungi.

The 核形虫目s, protists currently grouped in the Choanozoa英语Choanozoa (後鞭毛生物), may be the next sister group to the eumycete clade, and as such could be included in an expanded fungal kingdom.[112]

Many Actinomycetales英语Actinomycetales (放線菌門), a group with many filamentous bacteria, were also long believed to be fungi.

生態學[编辑]

正在分解桃子的毛霉菌

真菌遍布在地球的每一个角落。尽管很不起眼,它却是生态系统中至关重要的存在。和细菌一样,真菌作为大部分陆生(和一部分水生)生态系统中的主要分解者,它在生物地球化学循环和许多食物网英语food webs中都是至关重要的[131]。它们以腐生或者共生的形式作用于养分循环英语nutrient cycling,把有機物質降解成无机分子。然后这些分子就可以在合成代谢或者新陈代谢中被其他有机体再次利用[132][133]

共生[编辑]

真菌可以和几乎所有的生物构成共生关系[134][135][136]。它们可以是互利共生,竞争共生,或者偏利共生(對其中一方生物體有益,对另一方没有明显的影响)[137][138][139]

与植物共生[编辑]

菌根是土壤中某些真菌与植物根的共生体,是植物和真菌间最为人熟知的合作方式之一,是超过九成的植物赖以生长和生存的方式[140]

A microscopic view of blue-stained cells, some with dark wavy lines in them
The dark filaments are 菌丝 of the endophytic fungus Neotyphodium coenophialum英语Neotyphodium coenophialum in the intercellular spaces of 苇状羊茅 leaf sheath tissue

菌根共生关系可以追溯到4亿年前[120]。它可以增强植物根茎从土壤中吸收那些浓度低却至关重要的无机营养(如硝酸盐磷酸鹽)的能力[132][141]。 The fungal partners may also mediate plant-to-plant transfer of carbohydrates and other nutrients. Such mycorrhizal communities are called "common mycorrhizal networks".[142] A special case of mycorrhiza is myco-heterotrophy英语myco-heterotrophy, whereby the plant parasitizes the fungus, obtaining all of its nutrients from its fungal symbiont.[143] Some fungal species inhabit the tissues inside roots, stems, and leaves, in which case they are called endophytes.[144] Similar to mycorrhiza, endophytic colonization by fungi may benefit both symbionts; for example, endophytes of grasses impart to their host increased resistance to herbivores and other environmental stresses and receive food and shelter from the plant in return.[145]

与藻类和蓝藻共生[编辑]

A green, leaf-like structure attached to a tree, with a pattern of ridges and depression on the bottom surface
The lichen Lobaria pulmonaria英语Lobaria pulmonaria, a symbiosis of fungal, 藻類, and 藍菌門l species

地衣 are a symbiotic relationship between fungi and 光合作用 藻類 or 藍菌門. The photosynthetic partner in the relationship is referred to in lichen terminology as a "photobiont". The fungal part of the relationship is composed mostly of various species of 子囊菌门s and a few 担子菌门s.[146] Lichens occur in every ecosystem on all continents, play a key role in 成土作用 and the initiation of 演替,[147] and are prominent in some extreme environments, including 極地, 高山气候, and 半干旱气候 desert regions.[148] They are able to grow on inhospitable surfaces, including bare soil, rocks, 树皮, wood, shells, barnacles and leaves.[149] As in 菌根s, the photobiont provides sugars and other carbohydrates via 光合作用 to the fungus, while the fungus provides minerals and water to the photobiont. The functions of both symbiotic organisms are so closely intertwined that they function almost as a single organism; in most cases the resulting organism differs greatly from the individual components. Lichenization is a common mode of nutrition for fungi; around 20% of fungi—between 17,500 and 20,000 described species—are lichenized.[150] Characteristics common to most lichens include obtaining 总有机碳量 by photosynthesis, slow growth, small size, long life, long-lasting (seasonal) 營養繁殖 structures, mineral nutrition obtained largely from airborne sources, and greater tolerance of desiccation英语desiccation than most other photosynthetic organisms in the same habitat.[151]

与昆虫共生[编辑]

Many insects also engage in mutualistic relationships英语Ant-fungus mutualism with fungi. Several groups of ants cultivate fungi in the order 伞菌目 as their primary food source, while ambrosia beetles英语ambrosia beetles cultivate various species of fungi in the bark of trees that they infest.[152] Likewise, females of several 广腰亚目 species (genus Sirex英语Sirex) inject their eggs together with spores of the wood-rotting fungus Amylostereum areolatum into the 木材 of 松屬 trees; the growth of the fungus provides ideal nutritional conditions for the development of the wasp larvae.[153] At least one species of stingless bee英语stingless bee has a relationship with a fungus in the genus Monascus英语Monascus, where the larvae consume and depend on fungus transferred from old to new nests.[154] 白蟻 on the African 熱帶草原 are also known to cultivate fungi,[134] and yeasts of the genera 假丝酵母属 and Lachancea inhabit the gut of a wide range of insects, including 脈翅目ns, 鞘翅目s, and 蟑螂es; it is not known whether these fungi benefit their hosts.[155] Fungi ingrowing dead wood are essential for xylophagous英语Xylophagy insects (e.g. woodboring beetles英语woodboring beetles).[156][需要非第一級來源] They deliver nutrients needed by xylophages英语Xylophagy to nutritionally scarce dead wood英语Coarse woody debris.[157][需要非第一級來源] Thanks to this nutritional enrichment the larvae of woodboring insect is able to grow and develop to adulthood.[156] The larvae of many families of fungicolous flies, particularly those within the superfamily Sciaroidea英语Sciaroidea such as the Mycetophilidae英语Mycetophilidae and some Keroplatidae英语Keroplatidae feed on fungal fruiting bodies and sterile 菌根.[158]

作为病原体和寄生虫[编辑]

A thin brown stick positioned horizontally with roughly two dozen clustered orange-red leaves originating from a single point in the middle of the stick. These orange leaves are three to four times larger than the few other green leaves growing out of the stick, and are covered on the lower leaf surface with hundreds of tiny bumps. The background shows the green leaves and branches of neighboring shrubs.
The plant pathogen Aecidium magellanicum causes calafate rust英语calafate rust, seen here on a 小檗属 shrub in Chile.

Many fungi are 寄生s on plants, animals (including humans), and other fungi. Serious pathogens of many cultivated plants causing extensive damage and losses to agriculture and forestry include the rice blast英语rice blast fungus Magnaporthe oryzae英语Magnaporthe oryzae,[159] tree pathogens such as Ophiostoma ulmi英语Ophiostoma ulmi and Ophiostoma novo-ulmi英语Ophiostoma novo-ulmi causing Dutch elm disease英语Dutch elm disease[160] and Cryphonectria parasitica英语Cryphonectria parasitica responsible for chestnut blight英语chestnut blight,[161] and plant pathogens in the genera Fusarium英语Fusarium, 黑粉菌属, Alternaria英语Alternaria, and Cochliobolus英语Cochliobolus.[138] Some 食肉真菌, like Paecilomyces lilacinus英语Paecilomyces lilacinus, are predators英语Nematophagous fungus of 线虫动物门, which they capture using an array of specialized structures such as constricting rings or adhesive nets.[162]

Some fungi can cause serious diseases in humans, several of which may be fatal if untreated. These include aspergillosis英语aspergillosis, 念珠菌症, coccidioidomycosis英语coccidioidomycosis, 隱球菌病, histoplasmosis英语histoplasmosis, mycetomas英语Eumycetoma, and paracoccidioidomycosis英语paracoccidioidomycosis. Furthermore, persons with 免疫缺陷 are particularly susceptible to disease by genera such as 曲霉属, 假丝酵母属, 新型隱球菌,[139][163][164] Histoplasma英语Histoplasma,[165] and 肺孢子菌纲.[166] Other fungi can attack eyes, nails, hair, and especially skin, the so-called dermatophytic英语Dermatophyte and keratinophilic fungi, and cause local infections such as ringworm英语ringworm and 足癣.[167] Fungal spores are also a cause of 过敏, and fungi from different taxonomic groups can evoke allergic reactions.[168]

作为真菌寄生物的目标[编辑]

The organisms which parasitize fungi are known as mycoparasitic organisms. Certain species of the Pythium英语Pythium genus, which are 卵菌綱s, have potential as biocontrol agents against certain fungi.[169] Fungi can also act as mycoparasites or antagonists of other fungi, such as 金孢菌寄生, which grows on bolete英语bolete mushrooms.

Fungi can become the target of infection by mycovirus英语mycoviruses.

真菌毒素[编辑]

(6aR,9R)-N-((2R,5S,10aS,10bS)-5-benzyl-10b-hydroxy-2-methyl-3,6-dioxooctahydro-2H-oxazolo[3,2-a] pyrrolo[2,1-c]pyrazin-2-yl)-7-methyl-4,6,6a,7,8,9-hexahydroindolo[4,3-fg] quinoline-9-carboxamide
麦角胺麦角產生的毒素,食用後會產生坏疽、抽搐及幻觉等症狀

許多真菌會產生生物活性英语biological activity化合物,其中許多對動物或是植物是有毒的,因此稱為真菌毒素英语mycotoxins。其中對人類最重要的是造成食物腐敗的黴菌,以及有毒的蕈類(如上所述)。其中最為人知的是鵝膏菌屬中含有的致命毒傘肽,以及造成麦角中毒麦角胺,人若食用了被麥角菌中的黑麥角菌英语Claviceps purpurea菌核英语sclerotia污染的裸麥谷物,就有可能會中毒[170]。其他著名的真菌毒素有黃麴毒素(由曲霉属代謝所產生,是肝毒素英语Hepatotoxicity及高度致癌物質),以及赭曲霉毒素展青霉素單端孢烯英语trichothecene(例如T-2黴菌毒素英语T-2 mycotoxin)及伏馬菌素英语fumonisin,對人類或家畜的食物供應都有很大的影響[171]

真菌毒素屬於天然产物或是二次代謝產物,研究已證實了真菌中有單純生產真菌毒素及其他天然产物的生化路徑[25]。真菌毒素可以提昇真菌的適應度,包括有助於生理適應、可以和其他微生物或真菌競爭,可保護本身不會成為其他動物的食物[172][173]。許多真菌的二次代謝物或是衍生物已用在醫療上,在以下的“人类利用”段落中說明。

致病机制[编辑]

玉米黑粉菌 is a pathogenic plant fungus that causes smut disease in maize and 玉蜀黍属. Plants have evolved efficient defense systems against pathogenic microbes such as U. maydis. A rapid defense reaction after pathogen attack is the oxidative burst英语oxidative burst where the plant produces 活性氧类 at the site of the attempted invasion. U. maydis can respond to the oxidative burst with an oxidative stress response, regulated by the gene YAP1英语YAP1. The response protects U. maydis from the host defense, and is necessary for the pathogen’s virulence.[174] Furthermore, U. maydis has a well-established recombinational DNA修復 system which acts during mitosis and meiosis.[175] The system may assist the pathogen in surviving DNA damage arising from the host plant’s oxidative defensive response to infection.[176]

新型隱球菌 is an encapsulated yeast that can live in both plants and animals. C. neoformans usually infects the lungs, where it is phagocytosed by 肺泡巨噬細胞s.[177] Some C. neoformans can survive 胞內 macrophages, which appears to be the basis for 疾病潜伏期, disseminated disease, and resistance to antifungal agents. One mechanism by which C. neoformans survives the hostile macrophage environment is by up-regulating the expression of genes involved in the oxidative stress response.[177] Another mechanism involves 减数分裂. The majority of C. neoformans are mating "type a". Filaments of mating "type a" ordinarily have haploid nuclei, but they can become diploid (perhaps by endoduplication or by stimulated nuclear fusion) to form blastospore英语blastospores. The diploid nuclei of blastospores can undergo meiosis, including recombination, to form haploid basidiospores that can be dispersed.[178] This process is referred to as monokaryotic fruiting. this process requires a gene called DMC1英语DMC1, which is a conserved homologue of genes recA英语recA in bacteria and RAD51 in eukaryotes, that mediates homologous chromosome pairing during meiosis and repair of DNA double-strand breaks. Thus, C. neoformans can undergo a meiosis, monokaryotic fruiting, that promotes recombinational repair in the oxidative, DNA damaging environment of the host macrophage, and the repair capability may contribute to its virulence.[176][178]

人类利用[编辑]

人类利用真菌用于食物制备或保存和其他目的是广泛的,和有悠久的历史。蘑菇栽培和蘑菇采集是许多国家的大型工业。对真菌的历史使用和社会学影响的研究被称为民族真菌学英语ethnomycology。由于这群生物能够生产具有抗菌或其他生物活性的天然产物,许多真菌物种长期以来一直被使用或正在开发用于工业生产抗生素维生素紫杉醇和降胆固醇药物。 最近开发了真菌基因工程的方法[179],可以启用真菌物种的代谢工程学。例如,在大型发酵容器中容易以快速生长的酵母菌种[180]的遗传修饰开辟了与原始源生物体相比生产潜力更高的药品生产方式[181]

治疗用途[编辑]

现代化疗[编辑]

许多物种产生的代谢物是药理活性药物的主要来源。特别重要的是抗生素,包括青霉素,这是一种从小合成的β内酰胺类抗生素结构相关基团。尽管天然存在的青霉素青霉素G(由产黄青霉菌生产)具有相对较窄谱的生物活性,范围广泛的其他青霉素可被天然青霉素的化学改性来制备。现代青霉素是半合成的化合物,从最初发酵培养获得,但随后结构被改变为特定的期望性质[182]。被真菌产生的其他抗生素包括:环孢菌素,通常用作移植手术期间的免疫抑制剂; 和夫西地酸英语fusidic acid,用于帮助控制来自耐甲氧西林金黄色葡萄球菌的感染[183]。广泛使用抗生素治疗细菌性疾病,如结核病梅毒麻风病等人始于20世纪初,并持续至今。在自然界中,真菌或细菌来源的抗生素似乎具有双重作用:在高浓度下,它们作为化学防御,以抵抗与物种丰富的环境(例如根际)中的其他微生物的竞争,而在低浓度下,它们作为物种内或物种间信号的群体感应分子[184] 。由真菌产生的其他药物包括从Penicillium griseofulvum英语Penicillium griseofulvum分离的灰黄霉素,用于治疗真菌感染[185],和用于抑制甲羟戊酸途径羟甲基戊二酸单酰辅酶A还原酶抑制剂羟甲基戊二酸单酰辅酶A还原酶抑制剂)。在真菌中发现的他汀类的实例包括来自青霉菌的美伐他汀英语mevastatin,和来自土麴黴平菇洛伐他汀英语lovastatin[186]

传统和民间医学[编辑]

Upper surface view of a kidney-shaped fungus, brownish-red with a lighter yellow-brown margin, and a somewhat varnished or shiny appearance
Two dried yellow-orange caterpillars, one with a curly grayish fungus growing out of one of its ends. The grayish fungus is roughly equal to or slightly greater in length than the caterpillar, and tapers in thickness to a narrow end.
药用真菌赤芝 (左)和冬虫夏草 (右)

某些蘑菇享有作为传统医学药物的使用,如 中国传统医学药物疗法。带有应用的详细记录历史的值得注意的药用蘑菇包括姬松茸[187][188]灵芝[189],和冬虫夏草[190]。研究已经确定了这些和其他真菌产生的化合物对病毒[191][192]癌细胞具有抑制性生物学作用[187][193]。特定的代谢物,例如polysaccharide-K英语polysaccharide-K, 麦角胺, 和Β-内酰胺类抗生素,在临床医学常规使用。香菇香菇多糖的来源,在包括日本在内的几个国家[194][195]香菇多糖是批准用于癌症治疗的临床药物。在欧洲日本,来自云芝多糖K英语polysaccharide-K (品牌名称Krestin)是癌症治疗的批准佐剂[196]

发酵食物[编辑]

面包酵母酿酒酵母是一种单细胞真菌,是被用来做面包和其他基于小麦的产品,如比萨面团和饺子[197]酵母属的酵母物种也可被用于通过发酵来生产酒精饮料[198]。酱油曲霉(米曲霉)是酿造酱油(soy sauce)和日本清酒味噌准备的一个基本成分[199],而根黴物种被用于制作丹貝[200]。这些真菌中一些是培育或挑选出来的驯养品种是由于它们可以发酵食物,而且不会像曲霉菌那样产生真菌毒素(见下面)[201]植物素肉英语Quorn,一种肉类替代品,由金黄色镰孢英语Fusarium venenatum制成[202]

食用菌及有毒真菌[编辑]

Two light yellow-green mushrooms with stems and caps, one smaller and still in the ground, the larger one pulled out and laid beside the other to show its bulbous stem with a ring
毒鵝膏佔據全世界大多數蕈類中毒案例

食用蕈為真菌中較知名的品種。部份食用蕈以商業形式種植,但其他品種均須在野生尋獲。用於沙律、湯及其他菜式的雙孢蘑菇是常見的食用蕈,小型的雙孢蘑菇稱作紐扣菇,而較大的雙孢蘑菇則稱作波托贝洛蘑菇。很多亞洲真菌亦被商業種植,它們在西方的知名度亦被提高。包括新鮮草菇平菇香菇金針菇等在雜貨店和市場有售[203]

亦有很多食用蕈品種在野生尋獲英语Mushroom hunting,並用作個人食用或作商業出售。松乳菇羊肚菌鸡油菇松露黑喇叭菌英语Craterellus美味牛肝菌在市場高價出售。它們多用於較矜貴的菜式[204]

部份種類的芝士要求接種一些真菌進牛奶凝乳內,以發放芝士的獨特味道和質感。諸如包括斯蒂爾頓芝士罗克福干酪在內的藍乾酪便是透過接種羅克福爾青黴菌英语Penicillium roqueforti而製造出來的[205]。用於製作芝士的真菌均為無毒,因此人類可安全食用;但是,如黄曲霉毒素、罗斯康汀C英语roquefortine C、展青霉素等的霉菌毒素會隨著芝士成熟或储存期間所滋長的其他真菌而累積[206]

很多蕈類品種對人類來說是有毒的,中毒症狀從輕微消化問題或過敏,至出現幻觉、嚴重器官衰竭甚至死亡不等。有致命毒素的蕈屬類包括錐蓋傘屬英语Conocybe盔孢傘屬英语Galerina環柄菇屬英语Lepiota以及鵝膏菌屬[207]。鵝膏菌屬有毀滅天使(鱗柄白鵝膏)和毒鵝膏兩種最常見的致命葷類[208]。假羊肚菌(鹿花菌)經烹調後可食用,但未經烹調的假羊肚菌則具高毒性[209]油黄口蘑英语Tricholoma equestre曾被視為可食用,直至其被發現是因嚴重中毒導致横纹肌溶解症的成因為止[210]毒蠅傘亦有部份非致命中毒個案,大部份為其致幻剂成份所導致的消化系統問題。毒蠅傘歷史上在亞洲和歐洲被使用,現時在諸如東北西伯利亞科里亚克族等族群仍被用作宗教用途[211]

由於在缺乏適當訓練和知識下較難準確判斷有毒菌類,因此假定野生菌類有毒而不應該食用的建議亦經常出現[212][213]

控制虫害[编辑]

Two dead grasshoppers with a whitish fuzz growing on them
Grasshoppers killed by Beauveria bassiana英语Beauveria bassiana

In agriculture, fungi may be useful if they actively compete for nutrients and space with 病原体ic microorganisms such as bacteria or other fungi via the 竞争排除原则,[214] or if they are 寄生 of these pathogens. For example, certain species may be used to eliminate or suppress the growth of harmful plant pathogens, such as insects, , 野草s, 线虫动物门, and other fungi that cause diseases of important 农作物 plants.[215] This has generated strong interest in practical applications that use these fungi in the 生物防治 of these agricultural pests. Entomopathogenic fungi英语Entomopathogenic fungi can be used as 生物農藥, as they actively kill insects.[216] Examples that have been used as 生物農藥s are Beauveria bassiana英语Beauveria bassiana, Metarhizium英语Metarhizium spp, Hirsutella英语Hirsutella spp, Paecilomyces英语Paecilomyces (Isaria) spp, and Lecanicillium lecanii英语Lecanicillium lecanii.[217][218] Endophytic英语Endophytic fungi of grasses of the genus Neotyphodium英语Neotyphodium, such as N. coenophialum英语Neotyphodium coenophialum, produce alkaloids that are toxic to a range of invertebrate and vertebrate 食草动物. These alkaloids protect grass plants from 食草动物, but several endophyte alkaloids can poison grazing animals, such as cattle and sheep.[219] Infecting cultivars of 放牧場 or forage英语forage grasses with Neotyphodium endophytes is one approach being used in grass breeding英语plant breeding programs; the fungal strains are selected for producing only alkaloids that increase resistance to herbivores such as insects, while being non-toxic to livestock.[220]

真菌修復[编辑]

某些真菌,尤其是「白腐」菌,能降解殺蟲劑除草剂五氯酚矿物杂酚油煤焦油及重油,轉換為二氧化碳、水以及結構較單純的化學物質[221]。已證明真菌可以生物礦化英语biomineralization氧化物,因此有可能可以用在核污染場地的生物修復[222][223][224]

模式生物[编辑]

一些研究者将真菌作为模式生物(即在实验室里快速生长和有性繁殖的真菌)来研究,从而取得生物学上的重要发现。例如科学家曾利用发霉面包上的粉色麵包黴菌来测试他们的生化理论,从而提出一个基因一个酶假说英语one gene-one enzyme hypothesis。另外,小巢狀麴菌釀酒酵母的酵母菌,以及粟酒裂殖酵母菌英语Schizosaccharomyces pombe也都是重要的真菌模型,它们长期被应用于真核细胞生物学遗传学相关问题的的研究中,比如細胞週期调节,染色质结构以及基因表达调控英语gene regulation。其他真菌模型出现于更近的时期,他们被用于解决医学植物病理學以及工业使用方面有关生物学的问题,例如白色念珠菌英语Candida albicans——一种二态的机会性人体病原菌,[225]稻瘟病菌英语Magnaporthe grisea——一种植物病原菌,[226]毕赤酵母菌英语Pichia pastoris——一种广泛应用于真核蛋白质生产英语protein production的酵母菌。[227]

其他[编辑]

真菌被广泛用于生产工业化学品,如:檸檬酸葡萄糖酸乳酸苹果酸[228]以及工业酶,如使用於生物洗涤剂英语biological detergent中的脂酶[229]用於製造纖維素乙醇纤维素酶[230]沙洗的牛仔褲英语stonewashed jeans[231]淀粉酶[232]蔗糖酶蛋白酶木聚糖酶[233]其中最著名的為被當作迷幻药物娛樂性藥物和宗教信仰使用的迷幻蘑菇(俗稱魔術蘑菇)。

相關條目[编辑]

参考文献[编辑]

  1. ^ Moore RT. Taxonomic proposals for the classification of marine yeasts and other yeast-like fungi including the smuts. Botanica Marina. 1980, 23: 361–373. 
  2. ^ The classification system presented here is based on the 2007 phylogenetic study by Hibbett et al.
  3. ^ Stop neglecting fungi. Nature Microbiology. 2017/08, 2 (8). ISSN 2058-5276. doi:10.1038/nmicrobiol.2017.120 (英语). 
  4. ^ Simpson DP. Cassell's Latin Dictionary 5. London, UK: Cassell Ltd. 1979: 883. ISBN 0-304-52257-0. 
  5. ^ 5.0 5.1 Ainsworth, p. 2.
  6. ^ Mitzka W (编). Etymologisches Wörterbuch der deutschen Sprache. Berlin: Walter de Gruyter. 1960. 
  7. ^ Alexopoulos et al., p. 1.
  8. ^ LIAS Glossary. [2013-08-14]. 
  9. ^ Bruns T. Evolutionary biology: a kingdom revised. Nature. October 2006, 443 (7113): 758–61. Bibcode:2006Natur.443..758B. PMID 17051197. doi:10.1038/443758a. 
  10. ^ Baldauf SL, Palmer JD. Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. Proceedings of the National Academy of Sciences of the United States of America. December 1993, 90 (24): 11558–62. Bibcode:1993PNAS...9011558B. PMC 48023. PMID 8265589. doi:10.1073/pnas.90.24.11558. 
  11. ^ Deacon, p. 4.
  12. ^ 12.0 12.1 Deacon, pp. 128–129.
  13. ^ Alexopoulos et al., pp. 28–33.
  14. ^ Alexopoulos et al., pp. 31–32.
  15. ^ Shoji JY, Arioka M, Kitamoto K. Possible involvement of pleiomorphic vacuolar networks in nutrient recycling in filamentous fungi. Autophagy. 2006, 2 (3): 226–7. PMID 16874107. doi:10.4161/auto.2695. 
  16. ^ Deacon, p. 58.
  17. ^ Zabriskie TM, Jackson MD. Lysine biosynthesis and metabolism in fungi. Natural Product Reports. February 2000, 17 (1): 85–97. PMID 10714900. doi:10.1039/a801345d. 
  18. ^ Xu H, Andi B, Qian J, West AH, Cook PF. The alpha-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochemistry and Biophysics. 2006, 46 (1): 43–64. PMID 16943623. doi:10.1385/CBB:46:1:43. 
  19. ^ Alexopoulos et al., pp. 27–28.
  20. ^ Alexopoulos et al., p. 685.
  21. ^ 21.0 21.1 21.2 Alexopoulos et al., p. 30.
  22. ^ Desjardin DE, Perry BA, Lodge DJ, Stevani CV, Nagasawa E. Luminescent Mycena: new and noteworthy species. Mycologia. 2010, 102 (2): 459–77. PMID 20361513. doi:10.3852/09-197. 
  23. ^ Alexopoulos et al., p. 33.
  24. ^ Mihail JD, Bruhn JN. Foraging behaviour of Armillaria rhizomorph systems. Mycological Research. November 2005, 109 (Pt 11): 1195–207. PMID 16279413. doi:10.1017/S0953756205003606. 
  25. ^ 25.0 25.1 25.2 Keller NP, Turner G, Bennett JW. Fungal secondary metabolism - from biochemistry to genomics. Nature Reviews. Microbiology. December 2005, 3 (12): 937–47. PMID 16322742. doi:10.1038/nrmicro1286. 
  26. ^ Wu S, Schalk M, Clark A, Miles RB, Coates R, Chappell J. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nature Biotechnology. November 2006, 24 (11): 1441–7. PMID 17057703. doi:10.1038/nbt1251. 
  27. ^ Tudzynski B. Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Applied Microbiology and Biotechnology. March 2005, 66 (6): 597–611. PMID 15578178. doi:10.1007/s00253-004-1805-1. 
  28. ^ Vaupotic T, Veranic P, Jenoe P, Plemenitas A. Mitochondrial mediation of environmental osmolytes discrimination during osmoadaptation in the extremely halotolerant black yeast Hortaea werneckii. Fungal Genetics and Biology. June 2008, 45 (6): 994–1007. PMID 18343697. doi:10.1016/j.fgb.2008.01.006. 
  29. ^ Raghukumar C, Raghukumar S. Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquatic Microbial Ecology. 1998, 15 (2): 153–163. doi:10.3354/ame015153. 
  30. ^ Sancho LG, de la Torre R, Horneck G, Ascaso C, de Los Rios A, Pintado A, Wierzchos J, Schuster M. Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology. June 2007, 7 (3): 443–54. Bibcode:2007AsBio...7..443S. PMID 17630840. doi:10.1089/ast.2006.0046. 
  31. ^ Brem FM, Lips KR. Batrachochytrium dendrobatidis infection patterns among Panamanian amphibian species, habitats and elevations during epizootic and enzootic stages. Diseases of Aquatic Organisms. September 2008, 81 (3): 189–202. PMID 18998584. doi:10.3354/dao01960. 
  32. ^ Le Calvez T, Burgaud G, Mahé S, Barbier G, Vandenkoornhuyse P. Fungal diversity in deep-sea hydrothermal ecosystems. Applied and Environmental Microbiology. October 2009, 75 (20): 6415–21. PMC 2765129. PMID 19633124. doi:10.1128/AEM.00653-09. 
  33. ^ 33.0 33.1 Mueller GM, Schmit JP. Fungal biodiversity: what do we know? What can we predict?. Biodiversity and Conservation. 2006, 16: 1–5. doi:10.1007/s10531-006-9117-7. 
  34. ^ Hawksworth DL, Lücking R. Fungal Diversity Revisited: 2.2 to 3.8 Million Species. Microbiology Spectrum. July 2017, 5 (4). PMID 28752818. doi:10.1128/microbiolspec.FUNK-0052-2016. 
  35. ^ 35.0 35.1 35.2 35.3 35.4 35.5 35.6 35.7 Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, 等. A higher-level phylogenetic classification of the Fungi (PDF). Mycological Research. May 2007, 111 (Pt 5): 509–47. PMID 17572334. doi:10.1016/j.mycres.2007.03.004. (原始内容 (PDF)存档于2009-03-26). 
  36. ^ According to one 2001 estimate, some 10,000 fungal diseases are known. Struck C. Infection strategies of plant parasitic fungi. (编) Cooke BM, Jones DG, Kaye B. The Epidemiology of Plant Diseases. Berlin, Germany: Springer. 2006: 117. ISBN 1-4020-4580-8. 
  37. ^ Peintner U, Pöder R, Pümpel T. The Iceman's fungi. Mycological Research. 1998, 102 (10): 1153–1162. doi:10.1017/S0953756298006546. 
  38. ^ Ainsworth, p. 1.
  39. ^ Alexopoulos et al., pp. 1–2.
  40. ^ Ainsworth, p. 18.
  41. ^ Hawksworth DL. Pandora's mycological box: molecular sequences vs. morphology in understanding fungal relationships and biodiversity. Revista Iberoamericana de MicologíA. September 2006, 23 (3): 127–33. PMID 17196017. doi:10.1016/S1130-1406(06)70031-6. 
  42. ^ Harris SD. Branching of fungal hyphae: regulation, mechanisms and comparison with other branching systems. Mycologia. 2008, 100 (6): 823–32. PMID 19202837. doi:10.3852/08-177. 
  43. ^ Deacon, p. 51.
  44. ^ Deacon, p. 57.
  45. ^ Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews. Microbiology. October 2008, 6 (10): 763–75. PMID 18794914. doi:10.1038/nrmicro1987. 
  46. ^ Steenkamp ET, Wright J, Baldauf SL. The protistan origins of animals and fungi. Molecular Biology and Evolution. January 2006, 23 (1): 93–106. PMID 16151185. doi:10.1093/molbev/msj011. 
  47. ^ Stevens DA, Ichinomiya M, Koshi Y, Horiuchi H. Escape of Candida from caspofungin inhibition at concentrations above the MIC (paradoxical effect) accomplished by increased cell wall chitin; evidence for beta-1,6-glucan synthesis inhibition by caspofungin. Antimicrobial Agents and Chemotherapy. September 2006, 50 (9): 3160–1. PMC 1563524. PMID 16940118. doi:10.1128/AAC.00563-06. 
  48. ^ Moss ST. The Biology of Marine Fungi. Cambridge, UK: Cambridge University Press. 1986: 76. ISBN 0-521-30899-2. 
  49. ^ Peñalva MA, Arst HN. Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiology and Molecular Biology Reviews. September 2002, 66 (3): 426–46, table of contents. PMC 120796. PMID 12208998. doi:10.1128/MMBR.66.3.426-446.2002. 
  50. ^ 50.0 50.1 Howard RJ, Ferrari MA, Roach DH, Money NP. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proceedings of the National Academy of Sciences of the United States of America. December 1991, 88 (24): 11281–4. Bibcode:1991PNAS...8811281H. PMC 53118. PMID 1837147. doi:10.1073/pnas.88.24.11281. 
  51. ^ Money NP. Mechanics of invasive fungal growth and the significance of turgor in plant infection. Molecular Genetics of Host-Specific Toxins in Plant Disease: Proceedings of the 3rd Tottori International Symposium on Host-Specific Toxins, Daisen, Tottori, Japan, August 24–29, 1997. Netherlands: Kluwer Academic Publishers. 1998: 261–271. ISBN 0-7923-4981-4. 
  52. ^ Wang ZY, Jenkinson JM, Holcombe LJ, Soanes DM, Veneault-Fourrey C, Bhambra GK, Talbot NJ. The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea. Biochemical Society Transactions. April 2005, 33 (Pt 2): 384–8. PMID 15787612. doi:10.1042/BST0330384. 
  53. ^ Pereira JL, Noronha EF, Miller RN, Franco OL. Novel insights in the use of hydrolytic enzymes secreted by fungi with biotechnological potential. Letters in Applied Microbiology. June 2007, 44 (6): 573–81. PMID 17576216. doi:10.1111/j.1472-765X.2007.02151.x. 
  54. ^ Schaller M, Borelli C, Korting HC, Hube B. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses. November 2005, 48 (6): 365–77. PMID 16262871. doi:10.1111/j.1439-0507.2005.01165.x. 
  55. ^ Farrar JF. Carbohydrate metabolism in biotrophic plant pathogens. Microbiological Sciences. October 1985, 2 (10): 314–7. PMID 3939987. 
  56. ^ Fischer R, Zekert N, Takeshita N. Polarized growth in fungi--interplay between the cytoskeleton, positional markers and membrane domains. Molecular Microbiology. May 2008, 68 (4): 813–26. PMID 18399939. doi:10.1111/j.1365-2958.2008.06193.x. 
  57. ^ Christensen MJ, Bennett RJ, Ansari HA, Koga H, Johnson RD, Bryan GT, Simpson WR, Koolaard JP, Nickless EM, Voisey CR. Epichloë endophytes grow by intercalary hyphal extension in elongating grass leaves. Fungal Genetics and Biology. February 2008, 45 (2): 84–93. PMID 17919950. doi:10.1016/j.fgb.2007.07.013. 
  58. ^ Money NP. Mushroom stem cells. BioEssays. October 2002, 24 (10): 949–52. PMID 12325127. doi:10.1002/bies.10160. 
  59. ^ Willensdorfer M. On the evolution of differentiated multicellularity. Evolution; International Journal of Organic Evolution. February 2009, 63 (2): 306–23. PMID 19154376. doi:10.1111/j.1558-5646.2008.00541.x. 
  60. ^ Daniels KJ, Srikantha T, Lockhart SR, Pujol C, Soll DR. Opaque cells signal white cells to form biofilms in Candida albicans. The EMBO Journal. May 2006, 25 (10): 2240–52. PMC 1462973. PMID 16628217. doi:10.1038/sj.emboj.7601099. 
  61. ^ Marzluf GA. Regulation of nitrogen metabolism and gene expression in fungi. Microbiological Reviews. September 1981, 45 (3): 437–61. PMC 281519. PMID 6117784. 
  62. ^ Hynes MJ. Regulatory circuits of the amdS gene of Aspergillus nidulans. Antonie Van Leeuwenhoek. 1994, 65 (3): 179–82. PMID 7847883. doi:10.1007/BF00871944. 
  63. ^ Dadachova E, Bryan RA, Huang X, Moadel T, Schweitzer AD, Aisen P, Nosanchuk JD, Casadevall A. Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS One. 2007, 2 (5): e457. Bibcode:2007PLoSO...2..457D. PMC 1866175. PMID 17520016. doi:10.1371/journal.pone.0000457.  开放获取内容
  64. ^ Dadachova E, Casadevall A. Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Current Opinion in Microbiology. December 2008, 11 (6): 525–31. PMC 2677413. PMID 18848901. doi:10.1016/j.mib.2008.09.013. 
  65. ^ Alexopoulos et al., pp. 48–56.
  66. ^ Kirk et al., p. 633.
  67. ^ Heitman J. Sexual reproduction and the evolution of microbial pathogens. Current Biology. September 2006, 16 (17): R711–25. PMID 16950098. doi:10.1016/j.cub.2006.07.064. 
  68. ^ Alcamo IE, Pommerville J. Alcamo's Fundamentals of Microbiology. Boston, Massachusetts: Jones and Bartlett. 2004: 590. ISBN 0-7637-0067-3. 
  69. ^ 69.0 69.1 Redecker D, Raab P. Phylogeny of the glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers. Mycologia. 2006, 98 (6): 885–95. PMID 17486965. doi:10.3852/mycologia.98.6.885. 
  70. ^ Guarro J, Stchigel AM. Developments in fungal taxonomy. Clinical Microbiology Reviews. July 1999, 12 (3): 454–500. PMC 100249. PMID 10398676. 
  71. ^ 71.0 71.1 Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC. Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology. October 2000, 31 (1): 21–32. PMID 11118132. doi:10.1006/fgbi.2000.1228. 
  72. ^ Metzenberg RL, Glass NL. Mating type and mating strategies in Neurospora. BioEssays. February 1990, 12 (2): 53–9. PMID 2140508. doi:10.1002/bies.950120202. 
  73. ^ Jennings and Lysek, pp. 107–114.
  74. ^ Deacon, p. 31.
  75. ^ Alexopoulos et al., pp. 492–493.
  76. ^ Jennings and Lysek, p. 142.
  77. ^ Deacon, pp. 21–24.
  78. ^ Linder MB, Szilvay GR, Nakari-Setälä T, Penttilä ME. Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiology Reviews. November 2005, 29 (5): 877–96. PMID 16219510. doi:10.1016/j.femsre.2005.01.004. 
  79. ^ Trail F. Fungal cannons: explosive spore discharge in the Ascomycota. FEMS Microbiology Letters. November 2007, 276 (1): 12–8. PMID 17784861. doi:10.1111/j.1574-6968.2007.00900.x. 
  80. ^ Pringle A, Patek SN, Fischer M, Stolze J, Money NP. The captured launch of a ballistospore. Mycologia. 2005, 97 (4): 866–71. PMID 16457355. doi:10.3852/mycologia.97.4.866. 
  81. ^ Kirk et al., p. 495.
  82. ^ Brodie HJ. The Bird's Nest Fungi. Toronto, Ontario: University of Toronto Press. 1975: 80. ISBN 0-8020-5307-6. 
  83. ^ Alexopoulos et al., p. 545.
  84. ^ Jennings and Lysek, pp. 114–115.
  85. ^ Furlaneto MC, Pizzirani-Kleiner AA. Intraspecific hybridisation of Trichoderma pseudokoningii by anastomosis and by protoplast fusion. FEMS Microbiology Letters. January 1992, 69 (2): 191–5. PMID 1537549. doi:10.1111/j.1574-6968.1992.tb05150.x. 
  86. ^ Schardl CL, Craven KD. Interspecific hybridization in plant-associated fungi and oomycetes: a review. Molecular Ecology. November 2003, 12 (11): 2861–73. PMID 14629368. doi:10.1046/j.1365-294X.2003.01965.x. 
  87. ^ Donoghue MJ, Cracraft J. Assembling the Tree of Life. Oxford (Oxfordshire), UK: Oxford University Press. 2004: 187. ISBN 0-19-517234-5. 
  88. ^ Taylor and Taylor, p. 19.
  89. ^ Taylor and Taylor, pp. 7–12.
  90. ^ Bengtson, Stefan; Rasmussen, Birger; Ivarsson, Magnus; Muhling, Janet; Broman, Curt; Marone, Federica; Stampanoni, Marco; Bekker, Andrey. Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt. Nature Ecology & Evolution. 2017-04-24, 1 (6): 0141. ISSN 2397-334X. doi:10.1038/s41559-017-0141 (英语). 
  91. ^ Lücking R, Huhndorf S, Pfister DH, Plata ER, Lumbsch HT. Fungi evolved right on track. Mycologia. 2009, 101 (6): 810–22. PMID 19927746. doi:10.3852/09-016. 
  92. ^ 92.0 92.1 92.2 James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, 等. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature. October 2006, 443 (7113): 818–22. Bibcode:2006Natur.443..818J. PMID 17051209. doi:10.1038/nature05110. 
  93. ^ Taylor and Taylor, pp. 84–94 and 106–107.
  94. ^ Schoch CL, Sung GH, López-Giráldez F, Townsend JP, Miadlikowska J, Hofstetter V, 等. The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology. April 2009, 58 (2): 224–39. PMID 20525580. doi:10.1093/sysbio/syp020. 
  95. ^ 95.0 95.1 Brundrett MC. Coevolution of roots and mycorrhizas of land plants. New Phytologist. 2002, 154 (2): 275–304. doi:10.1046/j.1469-8137.2002.00397.x. 
  96. ^ Redecker D, Kodner R, Graham LE. Glomalean fungi from the Ordovician. Science. September 2000, 289 (5486): 1920–1. Bibcode:2000Sci...289.1920R. PMID 10988069. doi:10.1126/science.289.5486.1920. 
  97. ^ Taylor TN, Taylor EL. The distribution and interactions of some Paleozoic fungi. Review of Palaeobotany and Palynology. 1996, 95 (1–4): 83–94. doi:10.1016/S0034-6667(96)00029-2. 
  98. ^ Dotzler N, Walker C, Krings M, Hass H, Kerp H, Taylor TN, Agerer R. Acaulosporoid glomeromycotan spores with a germination shield from the 400-million-year-old Rhynie chert. Mycological Progress. 2009, 8 (1): 9–18. doi:10.1007/s11557-008-0573-1. 
  99. ^ Taylor JW, Berbee ML. Dating divergences in the Fungal Tree of Life: review and new analyses. Mycologia. 2006, 98 (6): 838–49. PMID 17486961. doi:10.3852/mycologia.98.6.838. 
  100. ^ Blackwell M, Vilgalys R, James TY, Taylor JW. Fungi. Eumycota: mushrooms, sac fungi, yeast, molds, rusts, smuts, etc.. Tree of Life Web Project. 2009 [2009-04-25]. 
  101. ^ Yuan X, Xiao S, Taylor TN. Lichen-like symbiosis 600 million years ago. Science. May 2005, 308 (5724): 1017–20. Bibcode:2005Sci...308.1017Y. PMID 15890881. doi:10.1126/science.1111347. 
  102. ^ Karatygin IV, Snigirevskaya NS, Vikulin SV. The most ancient terrestrial lichen Winfrenatia reticulata: A new find and new interpretation. Paleontological Journal. 2009, 43 (1): 107–114. doi:10.1134/S0031030109010110. 
  103. ^ Taylor TN, Hass H, Kerp H, Krings M, Hanlin RT. Perithecial ascomycetes from the 400 million year old Rhynie chert: an example of ancestral polymorphism. Mycologia. 2005, 97 (1): 269–85. PMID 16389979. doi:10.3852/mycologia.97.1.269. 
  104. ^ Dennis RL. A Middle Pennsylvanian basidiomycete mycelium with clamp connections. Mycologia. 1970, 62 (3): 578–584. JSTOR 3757529. doi:10.2307/3757529. 
  105. ^ Hibbett DS, Grimaldi D, Donoghue MJ. Cretaceous mushrooms in amber. Nature. 1995, 377 (6549): 487. Bibcode:1995Natur.377..487H. doi:10.1038/377487a0. 
  106. ^ Hibbett DS, Grimaldi D, Donoghue MJ. Fossil mushrooms from Miocene and Cretaceous ambers and the evolution of homobasidiomycetes. American Journal of Botany. 1997, 84 (7): 981–991. JSTOR 2446289. doi:10.2307/2446289. 
  107. ^ Eshet Y, Rampino MR, Visscher H. Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary. Geology. 1995, 23 (1): 967–970. Bibcode:1995Geo....23..967E. doi:10.1130/0091-7613(1995)023<0967:FEAPRO>2.3.CO;2. 
  108. ^ Foster CB, Stephenson MH, Marshall C, Logan GA, Greenwood PF. A revision of Reduviasporonites Wilson 1962: description, illustration, comparison and biological affinities. Palynology. 2002, 26 (1): 35–58. doi:10.2113/0260035. 
  109. ^ López-Gómez J, Taylor EL. Permian-Triassic transition in Spain: a multidisciplinary approach. Palaeogeography, Palaeoclimatology, Palaeoecology. 2005, 229 (1–2): 1–2. doi:10.1016/j.palaeo.2005.06.028. 
  110. ^ Looy CV, Twitchett RJ, Dilcher DL, Van Konijnenburg-Van Cittert JH, Visscher H. Life in the end-Permian dead zone. Proceedings of the National Academy of Sciences of the United States of America. July 2001, 98 (14): 7879–83. Bibcode:2001PNAS...98.7879L. PMC 35436. PMID 11427710. doi:10.1073/pnas.131218098. See image 2 
  111. ^ Ward PD, Botha J, Buick R, De Kock MO, Erwin DH, Garrison GH, Kirschvink JL, Smith R. Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo basin, South Africa. Science. February 2005, 307 (5710): 709–14. Bibcode:2005Sci...307..709W. PMID 15661973. doi:10.1126/science.1107068. 
  112. ^ 112.0 112.1 Shalchian-Tabrizi K, Minge MA, Espelund M, Orr R, Ruden T, Jakobsen KS, Cavalier-Smith T. Multigene phylogeny of choanozoa and the origin of animals. PLoS One. 2008, 3 (5): e2098. Bibcode:2008PLoSO...3.2098S. PMC 2346548. PMID 18461162. doi:10.1371/journal.pone.0002098.  开放获取内容
  113. ^ See Palaeos Fungi: Fungi for an introduction to fungal taxonomy, including recent controversies. archive
  114. ^ Celio GJ, Padamsee M, Dentinger BT, Bauer R, McLaughlin DJ. Assembling the Fungal Tree of Life: constructing the structural and biochemical database. Mycologia. 2006, 98 (6): 850–9. PMID 17486962. doi:10.3852/mycologia.98.6.850. 
  115. ^ Silar P. Protistes Eucaryotes: Origine, Evolution et Biologie des Microbes Eucaryotes. HAL: 462. 2016. ISBN 978-2-9555841-0-1. 
  116. ^ Esser K. The Mycota VII A: Systematics and Evolution (2nd ed.). Springer. 2014: 461. ISBN 978-3-642-55317-2. 
  117. ^ Gill EE, Fast NM. Assessing the microsporidia-fungi relationship: Combined phylogenetic analysis of eight genes. Gene. June 2006, 375: 103–9. PMID 16626896. doi:10.1016/j.gene.2006.02.023. 
  118. ^ Liu YJ, Hodson MC, Hall BD. Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes. BMC Evolutionary Biology. 2006, 6: 74. PMC 1599754. PMID 17010206. doi:10.1186/1471-2148-6-74. 
  119. ^ Lockhart RJ, Van Dyke MI, Beadle IR, Humphreys P, McCarthy AJ. Molecular biological detection of anaerobic gut fungi (Neocallimastigales) from landfill sites. Applied and Environmental Microbiology. August 2006, 72 (8): 5659–61. PMC 1538735. PMID 16885325. doi:10.1128/AEM.01057-06. 
  120. ^ 120.0 120.1 Remy W, Taylor TN, Hass H, Kerp H. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proceedings of the National Academy of Sciences of the United States of America. December 1994, 91 (25): 11841–3. Bibcode:1994PNAS...9111841R. PMC 45331. PMID 11607500. doi:10.1073/pnas.91.25.11841. 
  121. ^ Schüssler A, Schwarzott D, Walker C. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research. 2001, 105 (12): 1413–1421. doi:10.1017/S0953756201005196. 
  122. ^ Alexopoulos et al., p. 145.
  123. ^ 引用错误:没有为名为Kirk et al., p. 489的参考文献提供内容
  124. ^ For an example, see Samuels GJ. Trichoderma: systematics, the sexual state, and ecology. Phytopathology. February 2006, 96 (2): 195–206. PMID 18943925. doi:10.1094/PHYTO-96-0195. 
  125. ^ Radford A, Parish JH. The genome and genes of Neurospora crassa. Fungal Genetics and Biology. June 1997, 21 (3): 258–66. PMID 9290240. doi:10.1006/fgbi.1997.0979. 
  126. ^ Goffeau, A.; 等, Life with 6000 Genes, Science, 1996, 274 (5287): 546–567, JSTOR 2899628, doi:10.1126/science.274.5287.546 
  127. ^ Valverde ME, Paredes-López O, Pataky JK, Guevara-Lara F. Huitlacoche (Ustilago maydis) as a food source--biology, composition, and production. Critical Reviews in Food Science and Nutrition. January 1995, 35 (3): 191–229. PMID 7632354. doi:10.1080/10408399509527699. 
  128. ^ Zisova LG. Malassezia species and seborrheic dermatitis. Folia Medica. 2009, 51 (1): 23–33. PMID 19437895. 
  129. ^ Perfect JR. Cryptococcus neoformans: the yeast that likes it hot. FEMS Yeast Research. June 2006, 6 (4): 463–8. PMID 16696642. doi:10.1111/j.1567-1364.2006.00051.x. 
  130. ^ Blackwell M, Spatafora JW. Fungi and their allies. (编) Bills GF, Mueller GM, Foster MS. Biodiversity of Fungi: Inventory and Monitoring Methods. Amsterdam: Elsevier Academic Press. 2004: 18–20. ISBN 0-12-509551-1. 
  131. ^ Gadd GM. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research. January 2007, 111 (Pt 1): 3–49. PMID 17307120. doi:10.1016/j.mycres.2006.12.001. 
  132. ^ 132.0 132.1 Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. The New Phytologist. 2007, 173 (3): 611–20. PMID 17244056. doi:10.1111/j.1469-8137.2006.01936.x. 
  133. ^ Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C. Microbial co-operation in the rhizosphere. Journal of Experimental Botany. July 2005, 56 (417): 1761–78. PMID 15911555. doi:10.1093/jxb/eri197. 
  134. ^ 134.0 134.1 Aanen DK. As you reap, so shall you sow: coupling of harvesting and inoculating stabilizes the mutualism between termites and fungi. Biology Letters. June 2006, 2 (2): 209–12. PMC 1618886. PMID 17148364. doi:10.1098/rsbl.2005.0424. 
  135. ^ Nikoh N, Fukatsu T. Interkingdom host jumping underground: phylogenetic analysis of entomoparasitic fungi of the genus cordyceps. Molecular Biology and Evolution. April 2000, 17 (4): 629–38. PMID 10742053. doi:10.1093/oxfordjournals.molbev.a026341. 
  136. ^ Perotto S, Bonfante P. Bacterial associations with mycorrhizal fungi: close and distant friends in the rhizosphere. Trends in Microbiology. December 1997, 5 (12): 496–501. PMID 9447662. doi:10.1016/S0966-842X(97)01154-2. 
  137. ^ Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA. Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences of the United States of America. December 2003, 100 (26): 15649–54. Bibcode:2003PNAS..10015649A. PMC 307622. PMID 14671327. doi:10.1073/pnas.2533483100. 
  138. ^ 138.0 138.1 Paszkowski U. Mutualism and parasitism: the yin and yang of plant symbioses. Current Opinion in Plant Biology. August 2006, 9 (4): 364–70. PMID 16713732. doi:10.1016/j.pbi.2006.05.008. 
  139. ^ 139.0 139.1 Hube B. From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Current Opinion in Microbiology. August 2004, 7 (4): 336–41. PMID 15288621. doi:10.1016/j.mib.2004.06.003. 
  140. ^ Bonfante P. Plants, mycorrhizal fungi and endobacteria: a dialog among cells and genomes. The Biological Bulletin. April 2003, 204 (2): 215–20. JSTOR 1543562. PMID 12700157. doi:10.2307/1543562. 
  141. ^ van der Heijden MG, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. The New Phytologist. 2006, 172 (4): 739–52. PMID 17096799. doi:10.1111/j.1469-8137.2006.01862.x. 
  142. ^ Selosse MA, Richard F, He X, Simard SW. Mycorrhizal networks: des liaisons dangereuses?. Trends in Ecology & Evolution. November 2006, 21 (11): 621–8. PMID 16843567. doi:10.1016/j.tree.2006.07.003. 
  143. ^ Merckx V, Bidartondo MI, Hynson NA. Myco-heterotrophy: when fungi host plants. Annals of Botany. December 2009, 104 (7): 1255–61. PMC 2778383. PMID 19767309. doi:10.1093/aob/mcp235. 
  144. ^ Schulz B, Boyle C. The endophytic continuum. Mycological Research. June 2005, 109 (Pt 6): 661–86. PMID 16080390. doi:10.1017/S095375620500273X. 
  145. ^ Clay K, Schardl C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. The American Naturalist. October 2002,. 160 Suppl 4 (suppl. 4): S99–S127. PMID 18707456. doi:10.1086/342161. 
  146. ^ Brodo IM, Sharnoff SD. Lichens of North America. New Haven, Connecticut: Yale University Press. 2001. ISBN 0-300-08249-5. 
  147. ^ Raven PH, Evert RF, Eichhorn, SE. 14—Fungi. Biology of Plants 7. W. H. Freeman. 2005: 290. ISBN 978-0-7167-1007-3. 
  148. ^ Deacon, p. 267.
  149. ^ Purvis W. Lichens. Washington, D.C.: Smithsonian Institution Press in association with the Natural History Museum, London. 2000: 49–75. ISBN 1-56098-879-7. 
  150. ^ Kirk et al., p. 378.
  151. ^ Deacon, pp. 267–276.
  152. ^ Douglas AE. Mycetocyte symbiosis in insects. Biological Reviews of the Cambridge Philosophical Society. November 1989, 64 (4): 409–34. PMID 2696562. doi:10.1111/j.1469-185X.1989.tb00682.x. 
  153. ^ Deacon, p. 277.
  154. ^ Entomologists: Brazilian Stingless Bee Must Cultivate Special Type of Fungus to Survive. Sci-News.com. 2015-10-23 [2015-10-25]. 
  155. ^ Nguyen NH, Suh SO, Blackwell M. Five novel Candida species in insect-associated yeast clades isolated from Neuroptera and other insects. Mycologia. 2007, 99 (6): 842–58. PMID 18333508. doi:10.3852/mycologia.99.6.842. 
  156. ^ 156.0 156.1 Filipiak, Michał; Weiner, January. Nutritional dynamics during the development of xylophagous beetles related to changes in the stoichiometry of 11 elements. Physiological Entomology. 2017-03-01, 42 (1): 73–84. ISSN 1365-3032. doi:10.1111/phen.12168 (英语). 
  157. ^ Filipiak, Michał; Sobczyk, Łukasz; Weiner, January. Fungal Transformation of Tree Stumps into a Suitable Resource for Xylophagous Beetles via Changes in Elemental Ratios. Insects. 2016-04-09, 7 (2): 13. doi:10.3390/insects7020013. 
  158. ^ Chandler PJ. A Dipterist's Handbook (2nd Edition). U.K.: The Amateur Entomologists' Society. 2010: 1–525. 
  159. ^ Talbot NJ. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annual Review of Microbiology. 2003, 57: 177–202. PMID 14527276. doi:10.1146/annurev.micro.57.030502.090957. 
  160. ^ Paoletti M, Buck KW, Brasier CM. Selective acquisition of novel mating type and vegetative incompatibility genes via interspecies gene transfer in the globally invading eukaryote Ophiostoma novo-ulmi. Molecular Ecology. January 2006, 15 (1): 249–62. PMID 16367844. doi:10.1111/j.1365-294X.2005.02728.x. 
  161. ^ Gryzenhout M, Wingfield BD, Wingfield MJ. New taxonomic concepts for the important forest pathogen Cryphonectria parasitica and related fungi. FEMS Microbiology Letters. May 2006, 258 (2): 161–72. PMID 16640568. doi:10.1111/j.1574-6968.2006.00170.x. 
  162. ^ Yang Y, Yang E, An Z, Liu X. Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. Proceedings of the National Academy of Sciences of the United States of America. May 2007, 104 (20): 8379–84. Bibcode:2007PNAS..104.8379Y. PMC 1895958. PMID 17494736. doi:10.1073/pnas.0702770104. 
  163. ^ Nielsen K, Heitman J. Sex and virulence of human pathogenic fungi. Advances in Genetics. Advances in Genetics. 2007, 57: 143–73. ISBN 978-0-12-017657-1. PMID 17352904. doi:10.1016/S0065-2660(06)57004-X. 
  164. ^ Brakhage AA. Systemic fungal infections caused by Aspergillus species: epidemiology, infection process and virulence determinants. Current Drug Targets. December 2005, 6 (8): 875–86. PMID 16375671. doi:10.2174/138945005774912717. 
  165. ^ Kauffman CA. Histoplasmosis: a clinical and laboratory update. Clinical Microbiology Reviews. January 2007, 20 (1): 115–32. PMC 1797635. PMID 17223625. doi:10.1128/CMR.00027-06. 
  166. ^ Cushion MT, Smulian AG, Slaven BE, Sesterhenn T, Arnold J, Staben C, Porollo A, Adamczak R, Meller J. Transcriptome of Pneumocystis carinii during fulminate infection: carbohydrate metabolism and the concept of a compatible parasite. PLoS One. 2007, 2 (5): e423. Bibcode:2007PLoSO...2..423C. PMC 1855432. PMID 17487271. doi:10.1371/journal.pone.0000423.  开放获取内容
  167. ^ Cook GC, Zumla AI. Manson's Tropical Diseases: Expert Consult. Edinburgh, Scotland: Saunders Ltd. 2008: 347. ISBN 1-4160-4470-1. 
  168. ^ Simon-Nobbe B, Denk U, Pöll V, Rid R, Breitenbach M. The spectrum of fungal allergy. International Archives of Allergy and Immunology. 2008, 145 (1): 58–86. PMID 17709917. doi:10.1159/000107578. 
  169. ^ Le Floch G, Rey P, Benizri E, Benhamou N, Tirilly Y. Impact of auxin-compounds produced by the antagonistic fungus Pythium oligandrum or the minor pathogen Pythium group F on plant growth.. Plant Soil. 2003, 257 (2): 459–470. doi:10.1023/a:1027330024834. 
  170. ^ Schardl CL, Panaccione DG, Tudzynski P. Ergot alkaloids--biology and molecular biology. The Alkaloids. Chemistry and Biology. The Alkaloids: Chemistry and Biology. 2006, 63: 45–86. ISBN 978-0-12-469563-4. PMID 17133714. doi:10.1016/S1099-4831(06)63002-2. 
  171. ^ van Egmond HP, Schothorst RC, Jonker MA. Regulations relating to mycotoxins in food: perspectives in a global and European context. Analytical and Bioanalytical Chemistry. September 2007, 389 (1): 147–57. PMID 17508207. doi:10.1007/s00216-007-1317-9. 
  172. ^ Demain AL, Fang A. The natural functions of secondary metabolites. Advances in Biochemical Engineering/Biotechnology. Advances in Biochemical Engineering/Biotechnology. 2000, 69: 1–39. ISBN 978-3-540-67793-2. PMID 11036689. doi:10.1007/3-540-44964-7_1. 
  173. ^ Rohlfs M, Albert M, Keller NP, Kempken F. Secondary chemicals protect mould from fungivory. Biology Letters. October 2007, 3 (5): 523–5. PMC 2391202. PMID 17686752. doi:10.1098/rsbl.2007.0338. 
  174. ^ Molina L, Kahmann R. An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. The Plant Cell. July 2007, 19 (7): 2293–309. PMC 1955693. PMID 17616735. doi:10.1105/tpc.107.052332. 
  175. ^ Kojic M, Zhou Q, Lisby M, Holloman WK. Rec2 interplay with both Brh2 and Rad51 balances recombinational repair in Ustilago maydis. Molecular and Cellular Biology. January 2006, 26 (2): 678–88. PMC 1346908. PMID 16382157. doi:10.1128/MCB.26.2.678-688.2006. 
  176. ^ 176.0 176.1 Michod RE, Bernstein H, Nedelcu AM. Adaptive value of sex in microbial pathogens (PDF). Infection, Genetics and Evolution. May 2008, 8 (3): 267–85. PMID 18295550. doi:10.1016/j.meegid.2008.01.002. 
  177. ^ 177.0 177.1 Fan W, Kraus PR, Boily MJ, Heitman J. Cryptococcus neoformans gene expression during murine macrophage infection. Eukaryotic Cell. August 2005, 4 (8): 1420–33. PMC 1214536. PMID 16087747. doi:10.1128/EC.4.8.1420-1433.2005. 
  178. ^ 178.0 178.1 Lin X, Hull CM, Heitman J. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature. April 2005, 434 (7036): 1017–21. Bibcode:2005Natur.434.1017L. PMID 15846346. doi:10.1038/nature03448. 
  179. ^ Fincham JR. Transformation in fungi. Microbiological Reviews. March 1989, 53 (1): 148–70. PMC 372721. PMID 2651864. 
  180. ^ Hawkins KM, Smolke CD. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nature Chemical Biology. September 2008, 4 (9): 564–73. PMC 2830865. PMID 18690217. doi:10.1038/nchembio.105. 
  181. ^ Huang B, Guo J, Yi B, Yu X, Sun L, Chen W. Heterologous production of secondary metabolites as pharmaceuticals in Saccharomyces cerevisiae. Biotechnology Letters. July 2008, 30 (7): 1121–37. PMID 18512022. doi:10.1007/s10529-008-9663-z. 
  182. ^ Brakhage AA, Spröte P, Al-Abdallah Q, Gehrke A, Plattner H, Tüncher A. Regulation of penicillin biosynthesis in filamentous fungi. Advances in Biochemical Engineering/Biotechnology. Advances in Biochemical Engineering/Biotechnology. 2004, 88: 45–90. ISBN 978-3-540-22032-9. PMID 15719552. doi:10.1007/b99257. 
  183. ^ Pan A, Lorenzotti S, Zoncada A. Registered and investigational drugs for the treatment of methicillin-resistant Staphylococcus aureus infection. Recent Patents on Anti-Infective Drug Discovery. January 2008, 3 (1): 10–33. PMID 18221183. doi:10.2174/157489108783413173. 
  184. ^ Fajardo A, Martínez JL. Antibiotics as signals that trigger specific bacterial responses. Current Opinion in Microbiology. April 2008, 11 (2): 161–7. PMID 18373943. doi:10.1016/j.mib.2008.02.006. 
  185. ^ Loo DS. Systemic antifungal agents: an update of established and new therapies. Advances in Dermatology. 2006, 22: 101–24. PMID 17249298. doi:10.1016/j.yadr.2006.07.001. 
  186. ^ Manzoni M, Rollini M. Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Applied Microbiology and Biotechnology. April 2002, 58 (5): 555–64. PMID 11956737. doi:10.1007/s00253-002-0932-9. 
  187. ^ 187.0 187.1 Hetland G, Johnson E, Lyberg T, Bernardshaw S, Tryggestad AM, Grinde B. Effects of the medicinal mushroom Agaricus blazei Murill on immunity, infection and cancer. Scandinavian Journal of Immunology. October 2008, 68 (4): 363–70. PMID 18782264. doi:10.1111/j.1365-3083.2008.02156.x. 
  188. ^ Firenzuoli F, Gori L, Lombardo G. The Medicinal Mushroom Agaricus blazei Murrill: Review of Literature and Pharmaco-Toxicological Problems. Evidence-Based Complementary and Alternative Medicine. March 2008, 5 (1): 3–15. PMC 2249742. PMID 18317543. doi:10.1093/ecam/nem007. 
  189. ^ Paterson RR. Ganoderma - a therapeutic fungal biofactory. Phytochemistry. September 2006, 67 (18): 1985–2001. PMID 16905165. doi:10.1016/j.phytochem.2006.07.004. 
  190. ^ Paterson RR. Cordyceps: a traditional Chinese medicine and another fungal therapeutic biofactory?. Phytochemistry. May 2008, 69 (7): 1469–95. PMID 18343466. doi:10.1016/j.phytochem.2008.01.027. 
  191. ^ el-Mekkawy S, Meselhy MR, Nakamura N, Tezuka Y, Hattori M, Kakiuchi N, Shimotohno K, Kawahata T, Otake T. Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochemistry. November 1998, 49 (6): 1651–7. PMID 9862140. doi:10.1016/S0031-9422(98)00254-4. 
  192. ^ El Dine RS, El Halawany AM, Ma CM, Hattori M. Anti-HIV-1 protease activity of lanostane triterpenes from the vietnamese mushroom Ganoderma colossum. Journal of Natural Products. June 2008, 71 (6): 1022–6. PMID 18547117. doi:10.1021/np8001139. 
  193. ^ Yuen JW, Gohel MD. Anticancer effects of Ganoderma lucidum: a review of scientific evidence. Nutrition and Cancer. 2005, 53 (1): 11–7. PMID 16351502. doi:10.1207/s15327914nc5301_2. 
  194. ^ Sullivan R, Smith JE, Rowan NJ. Medicinal mushrooms and cancer therapy: translating a traditional practice into Western medicine. Perspectives in Biology and Medicine. 2006, 49 (2): 159–70. PMID 16702701. doi:10.1353/pbm.2006.0034. 
  195. ^ Halpern GM, Miller A. Medicinal Mushrooms: Ancient Remedies for Modern Ailments. New York, New York: M. Evans and Co. 2002: 116. ISBN 0-87131-981-0. 
  196. ^ Fisher M, Yang LX. Anticancer effects and mechanisms of polysaccharide-K (PSK): implications of cancer immunotherapy. Anticancer Research. 2002, 22 (3): 1737–54. PMID 12168863. 
  197. ^ Kulp K. Handbook of Cereal Science and Technology. CRC Press. 2000. ISBN 0-8247-8294-1. 
  198. ^ Piskur J, Rozpedowska E, Polakova S, Merico A, Compagno C. How did Saccharomyces evolve to become a good brewer?. Trends in Genetics. April 2006, 22 (4): 183–6. PMID 16499989. doi:10.1016/j.tig.2006.02.002. 
  199. ^ Abe K, Gomi K, Hasegawa F, Machida M. Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia. September 2006, 162 (3): 143–53. PMID 16944282. doi:10.1007/s11046-006-0049-2. 
  200. ^ Hachmeister KA, Fung DY. Tempeh: a mold-modified indigenous fermented food made from soybeans and/or cereal grains. Critical Reviews in Microbiology. 1993, 19 (3): 137–88. PMID 8267862. doi:10.3109/10408419309113527. 
  201. ^ Jørgensen TR. Identification and toxigenic potential of the industrially important fungi, Aspergillus oryzae and Aspergillus sojae. Journal of Food Protection. December 2007, 70 (12): 2916–34. PMID 18095455. 
  202. ^ O'Donnell K, Cigelnik E, Casper HH. Molecular phylogenetic, morphological, and mycotoxin data support reidentification of the Quorn mycoprotein fungus as Fusarium venenatum. Fungal Genetics and Biology. February 1998, 23 (1): 57–67. PMID 9501477. doi:10.1006/fgbi.1997.1018. 
  203. ^ Stamets P. Growing Gourmet and Medicinal Mushrooms = [Shokuyō oyobi yakuyō kinoko no saibai]. Berkeley, California: Ten Speed Press. 2000: 233–248. ISBN 1-58008-175-4. 
  204. ^ Hall, pp. 13–26.
  205. ^ Kinsella JE, Hwang DH. Enzymes of Penicillium roqueforti involved in the biosynthesis of cheese flavor. CRC Critical Reviews in Food Science and Nutrition. November 1976, 8 (2): 191–228. PMID 21770. doi:10.1080/10408397609527222. 
  206. ^ Erdogan A, Gurses M, Sert S. Isolation of moulds capable of producing mycotoxins from blue mouldy Tulum cheeses produced in Turkey. International Journal of Food Microbiology. August 2003, 85 (1–2): 83–5. PMID 12810273. doi:10.1016/S0168-1605(02)00485-3. 
  207. ^ Orr DB, Orr RT. Mushrooms of Western North America. Berkeley, California: University of California Press. 1979: 17. ISBN 0-520-03656-5. 
  208. ^ Vetter J. Toxins of Amanita phalloides. Toxicon. January 1998, 36 (1): 13–24. PMID 9604278. doi:10.1016/S0041-0101(97)00074-3. 
  209. ^ Leathem AM, Dorran TJ. Poisoning due to raw Gyromitra esculenta (false morels) west of the Rockies. Cjem. March 2007, 9 (2): 127–30. PMID 17391587. doi:10.1017/s1481803500014937. 
  210. ^ Karlson-Stiber C, Persson H. Cytotoxic fungi--an overview. Toxicon. September 2003, 42 (4): 339–49. PMID 14505933. doi:10.1016/S0041-0101(03)00238-1. 
  211. ^ Michelot D, Melendez-Howell LM. Amanita muscaria: chemistry, biology, toxicology, and ethnomycology. Mycological Research. February 2003, 107 (Pt 2): 131–46. PMID 12747324. doi:10.1017/S0953756203007305. 
  212. ^ Hall, p. 7.
  213. ^ Ammirati JF, McKenny M, Stuntz DE. The New Savory Wild Mushroom. Seattle, Washington: University of Washington Press. 1987: xii–xiii. ISBN 0-295-96480-4. 
  214. ^ López-Gómez J, Molina-Meyer M. The competitive exclusion principle versus biodiversity through competitive segregation and further adaptation to spatial heterogeneities. Theoretical Population Biology. February 2006, 69 (1): 94–109. PMID 16223517. doi:10.1016/j.tpb.2005.08.004. 
  215. ^ Becker H. Setting the Stage To Screen Biocontrol Fungi. United States Department of Agriculture, Agricultural Research Service. 1998 [2009-02-23]. 
  216. ^ Keiller TS. Whey-based fungal microfactory technology for enhanced biological pest management using fungi (PDF). UVM Innovations. [2011-10-29]. (原始内容 (PDF)存档于2011-10-29). 
  217. ^ Deshpande MV. Mycopesticide production by fermentation: potential and challenges. Critical Reviews in Microbiology. 1999, 25 (3): 229–43. PMID 10524330. doi:10.1080/10408419991299220. 
  218. ^ Thomas MB, Read AF. Can fungal biopesticides control malaria?. Nature Reviews. Microbiology. May 2007, 5 (5): 377–83. PMID 17426726. doi:10.1038/nrmicro1638. 
  219. ^ Bush LP, Wilkinson HH, Schardl CL. Bioprotective Alkaloids of Grass-Fungal Endophyte Symbioses. Plant Physiology. May 1997, 114 (1): 1–7. PMC 158272. PMID 12223685. doi:10.1104/pp.114.1.1. 
  220. ^ Bouton JH, Latch GC, Hill NS, Hoveland CS, McCann MA, Watson RH, Parish JA, Hawkins LL, Thompson FN. Reinfection of Tall Fescue Cultivars with Non-Ergot Alkaloid–Producing Endophytes. Agronomy Journal. 2002, 94 (3): 567–574. doi:10.2134/agronj2002.5670.  Review by Parish JA, McCann MA, Watson RH, Hoveland CS, Hawkins LL, Hill NS, Bouton JH. Use of nonergot alkaloid-producing endophytes for alleviating tall fescue toxicosis in sheep. Journal of Animal Science. May 2003, 81 (5): 1316–22. PMID 12772860. doi:10.2527/2003.8151316x. 
  221. ^ Christian V, Shrivastava R, Shukla D, Modi HA, Vyas BR. Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: enzymology and mechanisms involved. Indian Journal of Experimental Biology. April 2005, 43 (4): 301–12. PMID 15875713. 
  222. ^ Fungi to fight 'toxic war zones'. BBC News. 2008-05-05. 
  223. ^ Fomina M, Charnock JM, Hillier S, Alvarez R, Gadd GM. Fungal transformations of uranium oxides. Environmental Microbiology. July 2007, 9 (7): 1696–710. PMID 17564604. doi:10.1111/j.1462-2920.2007.01288.x. 
  224. ^ Fomina M, Charnock JM, Hillier S, Alvarez R, Livens F, Gadd GM. Role of fungi in the biogeochemical fate of depleted uranium. Current Biology. May 2008, 18 (9): R375–7. PMID 18460315. doi:10.1016/j.cub.2008.03.011. 
  225. ^ Datta A, Ganesan K, Natarajan K. Current trends in Candida albicans research. Advances in Microbial Physiology. Advances in Microbial Physiology. 1989, 30: 53–88. ISBN 978-0-12-027730-8. PMID 2700541. doi:10.1016/S0065-2911(08)60110-1. 
  226. ^ Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, 等. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature. April 2005, 434 (7036): 980–6. Bibcode:2005Natur.434..980D. PMID 15846337. doi:10.1038/nature03449. 
  227. ^ Daly R, Hearn MT. Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. Journal of Molecular Recognition. 2005, 18 (2): 119–38. PMID 15565717. doi:10.1002/jmr.687. 
  228. ^ Schlegel HG. General Microbiology. Cambridge, UK: Cambridge University Press. 1993: 360. ISBN 0-521-43980-9. 
  229. ^ Joseph B, Ramteke PW, Thomas G. Cold active microbial lipases: some hot issues and recent developments. Biotechnology Advances. 2008, 26 (5): 457–70. PMID 18571355. doi:10.1016/j.biotechadv.2008.05.003. 
  230. ^ Kumar R, Singh S, Singh OV. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology. May 2008, 35 (5): 377–91. PMID 18338189. doi:10.1007/s10295-008-0327-8. 
  231. ^ Trichoderma spp., including T. harzianum, T. viride, T. koningii, T. hamatum and other spp. Deuteromycetes, Moniliales (asexual classification system). Biological Control: A Guide to Natural Enemies in North America. [2007-07-10]. (原始内容存档于2011-04-14). 
  232. ^ Olempska-Beer ZS, Merker RI, Ditto MD, DiNovi MJ. Food-processing enzymes from recombinant microorganisms--a review. Regulatory Toxicology and Pharmacology. July 2006, 45 (2): 144–158. PMID 16769167. doi:10.1016/j.yrtph.2006.05.001. 
  233. ^ Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS. Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology. June 2005, 67 (5): 577–91. PMID 15944805. doi:10.1007/s00253-005-1904-7. 

引用错误:在<references>标签中name属性为“Bowman2006”的参考文献没有在文中使用
引用错误:在<references>标签中name属性为“Beadle1941”的参考文献没有在文中使用
引用错误:在<references>标签中name属性为“Chang2004”的参考文献没有在文中使用
引用错误:在<references>标签中name属性为“Ferguson2003”的参考文献没有在文中使用
引用错误:在<references>标签中name属性为“James2006”的参考文献没有在文中使用

引用错误:在<references>标签中name属性为“OxfordDictionary”的参考文献没有在文中使用

被引用文献[编辑]

  • Ainsworth GC. Introduction to the History of Mycology. Cambridge, UK: Cambridge University Press. 1976. ISBN 0-521-11295-8. 
  • Alexopoulos CJ, Mims CW, Blackwell M. Introductory Mycology. John Wiley and Sons. 1996. ISBN 0-471-52229-5. 
  • Chandler PJ. A Dipterist's Handbook 2nd. The Amateur Entomologists' Society. 2010: 1–525. 
  • Deacon J. Fungal Biology. Cambridge, Massachusetts: Blackwell Publishers. 2005. ISBN 1-4051-3066-0. 
  • Hall IR. Edible and Poisonous Mushrooms of the World. Portland, Oregon: Timber Press. 2003. ISBN 0-88192-586-1. 
  • Hanson JR. The Chemistry of Fungi. Royal Society Of Chemistry. 2008. ISBN 0-85404-136-2. 
  • Jennings DH, Lysek G. Fungal Biology: Understanding the Fungal Lifestyle. Guildford, UK: Bios Scientific Publishers Ltd. 1996. ISBN 978-1-85996-150-6. 
  • Kirk PM, Cannon PF, Minter DW, Stalpers JA. Dictionary of the Fungi 10th. Wallingford, UK: CAB International. 2008. ISBN 0-85199-826-7. 
  • Taylor EL, Taylor TN. The Biology and Evolution of Fossil Plants. Englewood Cliffs, New Jersey: Prentice Hall. 1993. ISBN 0-13-651589-4. 

外部链接[编辑]