草稿:重金属

维基百科,自由的百科全书
跳转至: 导航搜索

定义[编辑]

重金属在元素周期表上的位置
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1  H He
2  Li Be B C N O F Ne
3  Na Mg Al Si P S Cl Ar
4  K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5  Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6  Cs Ba La * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7  Fr Ra Ac ** Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
** Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
 
满足的标准个数:
元素数量:
  
10  
3
  
9
5
  
8
14
  
6–7
56
  
4–5
14
  
1–3
4
  
0
3
  
非金属
19
各个金属元素所满足的不同“重金属判定标准”数量。本节内罗列的10个标准中,有2个基于密度,3个基于原子质量,2个基于原子序数,3个基于化学性质[注 1]这说明除了外,其他金属是否属于“重金属”还存在争议。
一般而言被视为非金属,而在此处也计入金属[14][注 2]Og在此处属于非金属。虚线内的元素单质密度(对于从砹至Ts的元素位预测值)大于5 g/cm3

对于重金属一词的定义,并无广泛接受的共识,因此在不同语境下可能有不同的含义。例如在冶金行业中,一种金属是否为重金属通常由其密度决定[15],物理学可能使用原子序数来定义[16],化学中可能根据其化学性质决定[8]

There is no widely agreed criterion-based definition of a heavy metal. Different meanings may be attached to the term, depending on the context. In metallurgy, for example, a heavy metal may be defined on the basis of density,[17] whereas in physics the distinguishing criterion might be atomic number,[18] and a chemist would likely be more concerned with chemical behaviour.[8]

Density criteria range from above 3.5 g/cm3 to above 7 g/cm3.[1] Atomic weight definitions can range from greater than sodium (atomic weight 22.98);[1] greater than 40 (excluding s- and f-block metals, hence starting with scandium);[2] or more than 200, i.e. from mercury onwards.[3] Atomic numbers of heavy metals are generally given as greater than 20 (calcium);[1] sometimes this is capped at 92 (uranium).[4] Definitions based on atomic number have been criticised for including metals with low densities. For example, rubidium in group (column) 1 of the periodic table has an atomic number of 37 but a density of only 1.532 g/cm3, which is below the threshold figure used by other authors.[19] The same problem may occur with atomic weight based definitions.[20]

Criteria based on chemical behaviour or periodic table position have been used or suggested. The United States Pharmacopeia includes a test for heavy metals that involves precipitating metallic impurities as their coloured sulfides."[5][注 3] In 1997, Stephen Hawkes, a chemistry professor writing in the context of fifty years' experience with the term, said it applied to "metals with insoluble sulfides and hydroxides, whose salts produce colored solutions in water and whose complexes are usually colored". On the basis of the metals he had seen referred to as heavy metals, he suggested it would useful to define them as (in general) all the metals in periodic table columns 3 to 16 that are in row 4 or greater, in other words, the transition metals and post-transition metals.[8][注 4] The lanthanides satisfy Hawkes' three-part description; the status of the actinides is not completely settled.[注 5][注 6]

In biochemistry, heavy metals are sometimes defined—on the basis of the Lewis acid (electronic pair acceptor) behaviour of their ions in aqueous solution—as class B and borderline metals.[41] In this scheme, class A metal ions prefer oxygen donors; class B ions prefer nitrogen or sulfur donors; and borderline or ambivalent ions show either class A or B characteristics, depending on the circumstances.[注 7] Class A metals, which tend to have low electronegativity and form bonds with large ionic character, are the alkali and alkaline earths, aluminium, the group 3 metals, and the lanthanides and actinides.[注 8] Class B metals, which tend to have higher electronegativity and form bonds with considerable covalent character, are mainly the heavier transition and post-transition metals. Borderline metals largely comprise the lighter transition and post-transition metals (plus arsenic and antimony). The distinction between the class A metals and the other two categories is sharp.[45] A frequently cited proposal[注 9] to use these classification categories instead of the more evocative[9] name heavy metal has not been widely adopted.[47]

以密度界定的重金属列表[编辑]

密度是否大于5 g/cm3有时被视为界定一个金属元素是否重金属的通用指标[48]。由于学术界对重金属尚没有一致定义,下方列表、以至本条目余下内容(除非另有注明)将会建基于上述标准。符合这个标准的类金属(例如砷和锑)有时候也会视作重金属(尤其是在环境化学领域)[49],本条目亦然。的密度为4.8 g/cm3[50],稍微低于上述标准,但仍会收录在下方列表之内。它较少被视为类金属[14]但它的某些waterborne chemistry性质与砷和锑相近[51]。有些密度低于上述标准的金属有时候也会当成“重金属”看待,例如[52](密度为1.8 g/cm3[53]、铝[52](2.7 g/cm3[54]、钙[55](1.55 g/cm3[56]、钡[55](3.6 g/cm3[57]。本条目把这些金属一概视为轻金属,不会进一步讨论。

主要通过商业开采生产 (下表以经济重要性分类,非正式分类方法)
战略性元素(30个)
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
被认为对多国战略利益举足轻重[58]
(右方列出其中22个,其余8个列于下方)
贵金属(8个)
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
稀有又昂贵[59]
战略性:
非战略性:
商品金属(9个)
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
公噸为单位在伦敦金属交易所交易
战略性:
非战略性:
其他(14个)
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
既非战略性元素,也非贵金属,亦非商品金属
主要通过核嬗变生产(下表以稳定性分类,非正式分类方法)
长寿命(15个)
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
半衰期长于一天
短寿命(16个)
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
半衰期短于一天
锑、砷、锗、碲通常被视作类金属,硒较少被这样看待。[14]
砈被推算为金属元素。[60]
放射性金属 这34个元素的所有同位素都不稳定,因此具放射性。虽然铋亦如此,但它的半衰期为年,是宇宙的年龄(138亿年)乘上超过十亿倍,因此不列为放射性金属。[61][62]
这8个元素也存在于自然环境中,但存量太少,不足以作经济上可行的开采。[63]

“重金属”一词的由来和用法[编辑]

史前时代的人类已经注意到铁(以Telluric iron英语Telluric iron形式存在)、金、银等天然金属英语Native metal很重。由于这些金属具有优良展性,它们被制成饰物、工具和武器,此为人类首次尝试用金属制造这些物品。[64]从史前时代至1809年前发现的金属之密度一概相对较高,这被视为singularly distinguishing criterion[65]自1809年起,科学家开始成功提取轻金属(例如等),这些金属密度低,冲击了当时科学家认为金属密度都高的传统想法,因此有科学家提议把这些金属成为“类金属”(意指它们的形态或外观类近于其他金属)[66][67]。但是,科学界最终没有采用这个说法,而是把轻金属承认为金属元素,“类金属”一词则用作指称非金属元素(其后改用作指称难以归类为金属或非金属的元素)[68]

“重金属”一词的早期使用可以追溯到1817年:当时,德国化学家利奧波德·格梅林英语Leopold Gmelin把化学元素分类为非金属、轻金属、重金属三种[69],他把轻金属界定为密度介于0.860 g/cm3至5.0 g/cm3的金属元素,重金属则界定为密度介于5.308 g/cm3至22.000 g/cm3的金属元素[70][注 10]“重金属”一词后来用作指称高原子量或高原子序的化学元素[19],有时与“重元素”一词交替使用,例如:in discussing the history of nuclear chemistry, Magee[71] notes that the actinides were once thought to represent a new heavy element transition group whereas Seaborg and co-workers "favoured ... a heavy metal rare-earth like series ..."。不过,在天文学领域,重元素所指的是任何比重的元素[72]

质疑[编辑]

苏格兰毒理学家约翰·达弗斯(John Duffus)在2002年审视了过往60年“重金属”一词在学术界的定义,发现各个定义迥然不同,因而批评这个术语无意义可言[73]。学术界也经常质疑一些金属是否属于重金属,理由包括它们太轻、它们涉及到生物过程英语Biological process当中、它们甚少构成环境危害英语Environmental hazard等,例如:钪(太轻)[19][74];钒、锌(涉及到生物过程)[75];铑、铟、锇(太稀有)[76]

广泛性[编辑]

虽然“重金属”一词的含义没有定论,但这个术语仍旧经常在科学文献里出现。2010年,有研究显示这个术语的使用量日益增加,似乎已经成为科学语言的一部分[77]。由于“重金属”一词既方便又为人熟悉,所以只要附上严谨定义,这个术语也会被视为可以接受的[41]。与重金属相对应的术语是“轻金属”,美国矿物、金属与材料学会英语The Minerals, Metals & Materials Society建议用这个名词指称铝、、铍、钛、锂以及其他高活性金属[78],它们的密度介乎0.534 g/cm3至4.54 g/cm3

生物角色[编辑]

Amount of heavy metals in
an average 70 kg human body
元素 毫克[79]
4000 4000
 
2500 2500
 
[注 11] 120 120
 
70 70
 
[注 12] 30 30
 
20 20
 
20 20
 
[注 13] 15 15
 
14 14
 
12 12
 
其他[注 14] 200 200
 
总计 7000

Trace amounts of some heavy metals, mostly in period 4, are required for certain biological processes. These are iron and copper (oxygen and electron transport); cobalt (complex syntheses and cell metabolism); zinc (hydroxylation);[84] vanadium and manganese (enzyme regulation or functioning); chromium (glucose utilisation); nickel (cell growth); arsenic (metabolic growth in some animals and possibly in humans) and selenium (antioxidant functioning and hormone production).[85] Periods 5 and 6 contain fewer essential heavy metals, consistent with the general pattern that heavier elements tend to be less abundant and that scarcer elements are less likely to be nutritionally essential.[86] In period 5, molybdenum is required for the catalysis of redox reactions; cadmium is used by some marine diatoms for the same purpose; and tin may be required for growth in a few species.[87] In period 6, tungsten is required by some archaea and bacteria for metabolic processes.[88] A deficiency of any of these period 4–6 essential heavy metals may increase susceptibility to heavy metal poisoning[89] (conversely, an excess may also have adverse biological effects). An average 70 kg human body is about 0.01% heavy metals (~7 g, equivalent to the weight of two dried peas, with iron at 4 g, zinc at 2.5 g, and lead at 0.12 g comprising the three main constituents), 2% light metals (~1.4 kg, the weight of a bottle of wine) and nearly 98% nonmetals (mostly water).[90][注 15]

有好几个不属于必要元素的重金属也被认为有生物影响。锗(类金属)、镓、铟以及大多数镧系元素可以刺激代谢,而钛(有时不被视为重金属)能够促进植物生长。[91]

注释[编辑]

  1. ^ (1)密度高于3.5 g/cm3[1];(2)密度高于7 g/cm3[1];(3)原子质量大于22.98[1];(4)原子质量大于40(除s区元素f区元素[2];(5)原子质量大于200[3];(6)原子序数大于20;(7)原子序数介于21与92[4];(8)依据美国药典[5][6][7];(9)基于Hawkes元素周期表的定义(除镧系锕系[8];(10)Nieboer与Richardson生物化学分类[9]。元素的密度数据主要来自于约翰·埃姆斯利的著作《Nature's Building Blocks》[10]。其中Ts的密度为预测值[11]的密度基于其原子质量与晶格结构进行推算[12][13]
  2. ^ Metalloids were, however, excluded from Hawkes' periodic table-based definition given he noted it was "not necessary to decide whether semimetals [i.e. metalloids] should be included as heavy metals."[8]
  3. ^ The test is not specific for any particular metals but is said to be capable of at least detecting Mo, Cu, Ag, Cd, Hg, Sn, Pb, As, Sb, and Bi.[6] In any event, when the test uses hydrogen sulfide as the reagent cannot detect Th, Ti, Zr, Nb, Ta, or Cr.[7]
  4. ^ Transition and post-transition metals that do not usually form coloured complexes are Sc and Y in group 3;[21] Ag in group 11;[22] Zn and Cd in group 12;[21][23] and the metals of groups 1316.[24]
  5. ^ Lanthanide (Ln) sulfides and hydroxides are insoluble;[25] the latter can be obtained from aqueous solutions of Ln salts as coloured gelatinous precipitates;[26] and Ln complexes have much the same colour as their aqua ions (the majority of which are coloured).[27] Actinide (An) sulfides may or may not be insoluble, depending on the author. Divalent uranium monosulfide英语uranium monosulfide is not attacked by boiling water.[28] Trivalent actinide ions behave similarly to the trivalent lanthanide ions hence the sulfides in question may be insoluble but this is not explicitly stated.[29] Tervalent An sulfides decompose[30] but Edelstein et al. say they are soluble[31] whereas Haynes says thorium(IV) sulfide英语thorium(IV) sulfide is insoluble.[32] Early in the history of nuclear fission it had been noted that precipitation with hydrogen sulfide was a "remarkably" effective way of isolating and detecting transuranium elements in solution.[33] In a similar vein, Deschlag writes that the elements after uranium were expected to have insoluble sulfides by analogy with third row transition metals. But he goes on to note that the elements after actinium were found to have properties different from those of the transition metals and claims they do not form insoluble sulfides.[34] The An hydroxides are, however, insoluble[31] and can be precipitated from aqueous solutions of their salts.[35] Finally, many An complexes have "deep and vivid" colours.[36]
  6. ^ The heavier elements commonly to less commonly recognised as metalloidsGe; As, Sb; Se, Te, Po; At—satisfy some of the three parts of Hawkes' definition. All of them have insoluble sulfides[35][37] but only Ge, Te, and Po apparently have effectively insoluble hydroxides.[38] All bar At can be obtained as coloured (sulfide) precipitates from aqueous solutions of their salts;[35] astatine is likewise precipitated from solution by hydrogen sulfide but, since visible quantities of At have never been synthesised, the colour of the precipitate is not known.[37][39] As p-block elements, their complexes are usually colourless.[40]
  7. ^ The class A and class B terminology is analogous to the "hard acid" and "soft base" terminology sometimes used to refer to the behaviour of metal ions in inorganic systems.[42]
  8. ^ Be and Al are exceptions to this general trend. They have somewhat higher electronegativity values.[43] Being relatively small their +2 or +3 ions have high charge densities, thereby polarising nearby electron clouds. The net result is that Be and Al compounds have considerable covalent character.[44]
  9. ^ Google Scholar has recorded more than 900 citations for the paper in question.[46]
  10. ^ 如果格梅林当时用的是英制单位,他可能会把300 lb/ft3定为轻金属与重金属的密度分界点,这样的话硒(密度为300.27 lb/ft3)就足以列入重金属。但是如果以5 g/cm3(相等于312.14lb/ft3)为分界点的话,硒就不是重金属了。
  11. ^ Lead, which is a cumulative poison, has a relatively high abundance due to its extensive historical use and human-caused discharge into the environment.[80]
  12. ^ Haynes shows an amount of < 17 mg for tin[81]
  13. ^ Iyengar records a figure of 5 mg for nickel;[82] Haynes shows an amount of 10 mg[81]
  14. ^ Encompassing 45 heavy metals occurring in quantities of less than 10 mg each, including As (7 mg), Mo (5), Co (1.5), and Cr (1.4)[83]
  15. ^ Of the elements commonly recognised as metalloids, B and Si were counted as nonmetals; Ge, As, Sb, and Te as heavy metals.

来源[编辑]

脚注[编辑]

  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 Duffus 2002,第798页
  2. ^ 2.0 2.1 Rand,Wells & McCarty(1995),第23页
  3. ^ 3.0 3.1 Baldwin & Marshall 1999,第267页
  4. ^ 4.0 4.1 Lyman 2003,第452页
  5. ^ 5.0 5.1 The United States Pharmacopeia 1985,第1189页
  6. ^ 6.0 6.1 Raghuram,Soma Raju & Sriramulu(2010),第15页
  7. ^ 7.0 7.1 Thorne & Roberts 1943,第534页
  8. ^ 8.0 8.1 8.2 8.3 8.4 Hawkes 1997
  9. ^ 9.0 9.1 Nieboer & Richardson 1980,第4页
  10. ^ Emsley 2011
  11. ^ Hoffman,Lee & Pershina(2011),第1691,1723页; Bonchev & Kamenska 1981,第1182页
  12. ^ Silva 2010,第1628, 1635, 1639, 1644页
  13. ^ Fournier 1976,第243页
  14. ^ 14.0 14.1 14.2 Vernon 2013,第1703页
  15. ^ Morris 1992,第1001页
  16. ^ Gorbachev,Zamyatnin & Lbov(1980),第5页
  17. ^ Morris 1992,第1001页
  18. ^ Gorbachev,Zamyatnin & Lbov(1980),第5页
  19. ^ 19.0 19.1 19.2 Duffus 2002,第797页
  20. ^ Liens 2010,第1415页
  21. ^ 21.0 21.1 Longo 1974,第683页
  22. ^ Tomasik & Ratajewicz 1985,第433页
  23. ^ Herron 2000,第511页
  24. ^ Nathans 1963,第265页
  25. ^ Topp 1965,第106页: Schweitzer & Pesterfield 2010,第284页
  26. ^ King 1995,第297页; Mellor 1924,第628页
  27. ^ Cotton 2006,第66页
  28. ^ Albutt & Dell 1963,第1796页
  29. ^ Wiberg 2001,第1722–1723页
  30. ^ Wiberg 2001,第1724页
  31. ^ 31.0 31.1 Edelstein et al. 2010,第1796页
  32. ^ Haynes 2015,第4–95页
  33. ^ Weart 1983,第94页
  34. ^ Deschlag 2011,第226页
  35. ^ 35.0 35.1 35.2 Wulfsberg 2000,第209–211页
  36. ^ Ahrland,Liljenzin & Rydberg(1973),第478页
  37. ^ 37.0 37.1 Korenman 1959,第1368页
  38. ^ Yang,Jolly & O'Keefe(1977),第2980页; Wiberg 2001,第592页; Kolthoff & Elving 1964,第529页
  39. ^ Close 2015,第78页
  40. ^ Parish 1977,第89页
  41. ^ 41.0 41.1 Rainbow 1991,第416页
  42. ^ Nieboer & Richardson 1980,第6–7页
  43. ^ Lee 1996,第332; 364页
  44. ^ Clugston & Flemming 2000,第294; 334, 336页
  45. ^ Nieboer & Richardson 1980,第7页
  46. ^ Nieboer & Richardson 1980
  47. ^ Hübner,Astin & Herbert(2010),第1511–1512页
  48. ^ Järup & 2003,第168页; Rasic-Milutinovic & Jovanovic 2013,第6页; Wijayawardena,Megharaj & Naidu(2016),第176页
  49. ^ Duffus 2002,第794–795; 800页
  50. ^ Emsley 2011,第480页
  51. ^ USEPA 1988,第1页; Uden 2005,第347–348页; DeZuane 1997,第93页; Dev 2008,第2–3页
  52. ^ 52.0 52.1 Ikehata et al. 2015,第143页
  53. ^ Emsley 2011,第71页
  54. ^ Emsley 2011,第30页
  55. ^ 55.0 55.1 Podsiki 2008,第1页
  56. ^ Emsley 2011,第106页
  57. ^ Emsley 2011,第62页
  58. ^ Chakhmouradian,Smith & Kynicky(2015),第456–457页
  59. ^ Cotton 1997,第ix页; Ryan 2012,第369页
  60. ^ Hermann,Hoffmann & Ashcroft(2013),第11604-1页
  61. ^ Emsley 2011,第75页
  62. ^ Gribbon 2016,第x页
  63. ^ Emsley 2011,第428–429; 414页; Wiberg 2001,第527页; Emsley 2011,第437; 21–22; 346–347; 408–409页
  64. ^ Raymond 1984,第8–9页
  65. ^ Chambers 1743: "That which distinguishes metals from all other bodies ... is their heaviness ..."
  66. ^ Oxford English Dictionary 1989
  67. ^ Gordh & Headrick 2003,第753页
  68. ^ Goldsmith 1982,第526页
  69. ^ Habashi 2009,第31页
  70. ^ Gmelin 1849,第2页
  71. ^ Magee 1969,第14页
  72. ^ Ridpath 2012,第208页
  73. ^ Duffus 2002,第794页
  74. ^ Leeper 1978,第ix页
  75. ^ Housecroft 2008,第802页
  76. ^ Shaw,Sahu & Mishra(1999),第89页; Martin & Coughtrey 1982,第2–3页
  77. ^ Hübner,Astin & Herbert(2010),第1513页
  78. ^ The Minerals, Metals and Materials Society 2016
  79. ^ Emsley 2011,第35; passim页
  80. ^ Emsley 2011,第280, 286页; Baird & Cann 2012,第549, 551页
  81. ^ 81.0 81.1 Haynes 2015,第7–48页
  82. ^ Iyengar 1998,第553页
  83. ^ Emsley 2011,第47; 331; 138; 133; passim页
  84. ^ Nieboer & Richardson 1978,第2页
  85. ^ Emsley 2011,第604; 31; 133; 358; 47; 475页
  86. ^ Valkovic 1990,第214, 218页
  87. ^ Emsley 2011,第331; 89; 552页
  88. ^ Emsley 2011,第571页
  89. ^ Venugopal & Luckey 1978,第307页
  90. ^ Emsley 2011,第24; passim页
  91. ^ Emsley 2011,第192; 197; 240; 120, 166, 188, 224, 269, 299, 423, 464, 549, 614; 559页

文献[编辑]