本页使用了标题或全文手工转换

E进制

维基百科,自由的百科全书
跳到导航 跳到搜索
记数系统
印度-阿拉伯数字系统
西方阿拉伯数字
阿拉伯文数字
高棉數字
印度數字
波羅米數字
泰语数字
汉字文化圈記數系統
中文数字
閩南語數字
越南语数字
算筹
日語數字
朝鲜文数字
苏州码子
字母記數系統
阿拉伯字母數字
亞美尼亞數字
西里爾數字
吉茲數字
希伯來數字
希腊数字
阿利耶波多數字
其它記數系統
雅典數字
巴比倫數字
古埃及數字
伊特拉斯坎數字
玛雅数字
罗马数字
底数区分的进位制系统
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 24 30 32 36 60 64

e进制是以自然對數底數——e作為進位制底數进制。類似於三进制,通常使用0、1、2三个数字來表達,但由於除了0、1和2之外大部分的整數在e进制中皆需要用無窮小數來表示,因此不是一個實用的進位制,但在底數經濟度模型中,e进制被認為是最高效率的進位制[1][2]

性質[编辑]

在e进制中,自然對數的行為與十進制中的常用對數類似[3],例如:

e进制效率[编辑]

底數經濟度模型中,e进制被認為是最高效率的進位制。

當一個數用進位()表達時,每個位數需要種符號表達,若要表達一個n位數字要儲存的元素 は:

進制系統中表示的n位數的資訊量)則有:

因此,在進制系統中以n位數能表示I的信息量所需的存儲元素數為:

之下,求出哪個能使最小即可, 即找到能使微分為0的

解得

因此解得以為底的進位制理論上能有最高的表達效率。

與其他進制比較[编辑]

e進制中,除了0、1和2之外,其他整數皆需要以無窮不循環小數來表達,其中整數部分可透過貪婪演算法找出[4]

十進制 二進制 e進制 三進制
1 1 1 1
2 10 2 2
3 11 10.0200 1120 0001 0101 10
4 100 11.0200 1120 0001 0101 11
5 101 12.0200 1120 0001 0101 12
6 110 20.1110 1110 2102 0120 20
7 111 21.1110 1110 2102 0120 21
8 1000 100.1120 1011 1100 0100 22
9 1001 101.1120 1011 1100 0100 100
10 1010 102.1120 1011 1100 0100 101
11 1011 110.2101 0102 0201 2102 102
12 1100 111.2101 0102 0201 2102 110

无理数的e进制表示[编辑]

常见无理数的e进制表示如下:

  • π ≈ 10.1010 0202 0002 1111 2002 0101 1200 0101 ...(e)OEIS中的数列A050948
  • e = 10(e) (在此計數系統為整數)
  • √2 ≈ 1.1002 1101 1011 1211 2000 1121 0000 0001 ...(e)
  • φ = (1+√5)/2 ≈ 1.1120 2012 1110 0100 2000 0201 2001 1100 ...(e)OEIS中的数列A105166

參見[编辑]

參考文獻[编辑]

  1. 伊東規之『マイクロコンピュータの基礎』日本理工出版会
  2. 桜井進『超・超面白くて眠れなくなる数学』PHP研究所
  1. ^ 田崎三郎. 『三』 の研究. 松山大学論集. 2011, 23 (3): 5––34. 
  2. ^ Hayes, Brian, Third base, American Scientist, 2001, 89 (6): 490–494, doi:10.1511/2001.40.3268, (原始内容存档于2016-03-24) 
  3. ^ Weird Number Bases. DataGenetics. [2018-02-01]. 
  4. ^ Bryan Jacobs, Sloane, N.J.A. (编). Sequence A105116 (The part of n left of the decimal point when written in base e). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.