# 愛因斯坦-嘉當理論

（重定向自ECT理論

## 動機

${\displaystyle G_{ab}=R_{ab}-{\frac {1}{2}}Rg_{ab}}$

(1) 其顯示出仿射理論，而非度規理論，對於重力能提供更好的描述；
(2) 其解釋仿射扭率的意義，在一些量子重力理論中自然出現；
(3) 其將自旋詮釋為仿射扭率，在幾何意義上是時空介質(spacetime medium)之位錯場(field of dislocations)的一項連續近似。

## 幾何與表示式

${\displaystyle a{\vec {u}}}$ + ${\displaystyle b{\vec {v}}}$

${\displaystyle a{\vec {u}}^{\prime }}$ + ${\displaystyle b{\vec {v}}^{\prime }}$

## 愛因斯坦-嘉當引力理论简介

### 用标架场重写愛因斯坦引力理论

• （1）引力场运动方程第一形式：${\displaystyle {\frac {D{{Q}^{(\alpha )\mu \nu }}}{D{{x}^{\nu }}}}={\frac {16\pi G}{{c}^{4}}}{{P}^{(\alpha )\mu }}}$
• （2）引力场运动方程第二形式：${\displaystyle {{R}^{\mu \nu }}-{\frac {1}{2}}{{g}^{\mu \nu }}R+{\frac {1}{2}}\lambda _{(\alpha )}^{\nu }{\frac {DK_{}^{(\alpha )\mu \rho }}{D{{x}^{\rho }}}}={\frac {8\pi G}{{c}^{4}}}\left(P_{m}^{\nu \mu }-P_{gk}^{\nu \mu }\right)}$

${\displaystyle {{P}^{(\alpha )\mu }}=P_{m}^{(\alpha )\mu }-P_{g}^{(\alpha )\mu }}$
{\displaystyle {\begin{aligned}&{{Q}^{(\alpha )\mu \nu }}=Q_{E}^{(\alpha )\mu \nu }+K_{}^{(\alpha )\mu \nu }\\&Q_{E}^{(\alpha )\mu \nu }={{F}^{(\alpha )\mu \nu }}+\left({{F}^{\mu (\alpha )\nu }}-{{F}^{\nu (\alpha )\mu }}\right)-2\left({{\lambda }^{(\alpha )\mu }}{{F}^{\nu }}-{{\lambda }^{(\alpha )\nu }}{{F}^{\mu }}\right)\\&K_{}^{(\alpha )\mu \nu }=\beta _{1}^{}{{F}^{(\alpha )\mu \nu }}+\beta _{2}^{}\left({{F}^{\mu (\alpha )\nu }}-{{F}^{\nu (\alpha )\mu }}\right)-2\beta _{3}^{}\left({{\lambda }^{(\alpha )\mu }}{{F}^{\nu }}-{{\lambda }^{(\alpha )\nu }}{{F}^{\mu }}\right)\\\end{aligned}}}
${\displaystyle P_{g}^{(\alpha )\mu }={\frac {{c}^{4}}{16\pi G}}\left(-{{F}_{\lambda \rho \sigma }}{{Q}^{\lambda \mu \sigma }}+{\frac {1}{4}}{{F}_{\lambda m\sigma }}{{Q}^{\lambda m\sigma }}\delta _{\rho }^{\mu }\right){{\lambda }^{(\alpha )\rho }}}$
{\displaystyle {\begin{aligned}&P_{m}^{(\alpha )\mu }=-{\frac {1}{\sqrt {-g}}}{\frac {\delta \left({{L}_{m}}{\sqrt {-g}}\right)}{\delta {{\lambda }_{(\alpha )\mu }}}}=-{\frac {\delta {{L}_{m}}}{\delta {{\lambda }_{(\alpha )\mu }}}}-{{L}_{m}}{{\lambda }^{(\alpha )\mu }}\\&\\\end{aligned}}}
${\displaystyle P_{gk}^{(\alpha )\mu }={\frac {{c}^{4}}{16\pi G}}\left(-{{F}_{\lambda \rho \sigma }}{{K}^{\lambda \mu \sigma }}+{\frac {1}{4}}{{F}_{\lambda m\sigma }}{{K}^{\lambda m\sigma }}\delta _{\rho }^{\mu }\right){{\lambda }^{(\alpha )\rho }}}$

${\displaystyle {{\beta }_{1}},{{\beta }_{2}},{{\beta }_{3}}<<1}$时，由引力场运动方程的第二形式得到爱因斯坦引力场运动方程： ${\displaystyle {{R}^{\mu \nu }}-{\frac {1}{2}}{{g}^{\mu \nu }}R={\frac {8\pi G}{{c}^{4}}}P_{m}^{\nu \mu }}$

### 愛因斯坦引力理论与狄拉克电子理论之间的矛盾

(1)电子场运动方程：

{\displaystyle \left\{{\begin{aligned}&i\hbar {{\gamma }^{\mu }}{{D}_{\mu }}\psi -mc\psi =0\\&i\hbar {{D}_{\mu }}{\bar {\psi }}{{\gamma }^{\mu }}+mc{\bar {\psi }}=0\\\end{aligned}}\right.}

(2)电磁场运动方程：

${\displaystyle {{D}_{\nu }}{{F}^{\mu \nu }}=-4\pi j_{e}^{\mu }}$

(3)引力场运动方程：

${\displaystyle {{R}^{\mu \nu }}-{\frac {1}{2}}{{g}^{\mu \nu }}R={\frac {8\pi G}{{c}^{4}}}\left(P_{e}^{\nu \mu }+P_{\gamma }^{\nu \mu }-{\frac {1}{2}}D_{\sigma }^{}{{s}_{e}}^{(\alpha \beta )\sigma }\lambda _{(\alpha )}^{\nu }\lambda _{(\beta )}^{\mu }\right)}$

${\displaystyle {{D}_{\nu }}P_{e}^{\mu \nu }=-{F_{\rho }}^{\mu }j_{e}^{\rho }+{\frac {1}{2}}{{R}_{(\alpha \beta )\nu }}^{\mu }s_{e}^{(\alpha \beta )\nu }}$

${\displaystyle {{D}_{\nu }}P_{e}^{\mu \nu }=-{F_{\rho }}^{\mu }j_{e}^{\rho }-{\frac {1}{4}}{{R}_{(\alpha \beta )\nu }}^{\mu }{{s}_{e}}^{(\alpha \beta )\nu }}$

### 有挠时空引力理论（愛因斯坦-嘉當理论）

${\displaystyle {{D}_{\nu }}\lambda _{\mu }^{(\alpha )}={{\partial }_{\nu }}\lambda _{\mu }^{(\alpha )}-\Gamma _{\mu \nu }^{\rho }\lambda _{\rho }^{(\alpha )}+{\hat {\Gamma }}_{(\beta )\nu }^{(\alpha )}\lambda _{\mu }^{(\beta )}\neq 0}$

(1)电子场运动方程：

{\displaystyle \left\{{\begin{aligned}&{\frac {1}{2}}\left(i\hbar {{\gamma }^{\mu }}D_{\mu }^{}\psi +i\hbar D_{\mu }^{}({{\gamma }^{\mu }}\psi )\right)-mc\psi =0\\&{\frac {1}{2}}\left(i\hbar D_{\mu }^{}{\bar {\psi }}{{\gamma }^{\mu }}+i\hbar D_{\mu }^{}({\bar {\psi }}{{\gamma }^{\mu }})\right)+mc{\bar {\psi }}=0\\\end{aligned}}\right.}

(2)电磁场运动方程：

${\displaystyle D_{\nu }^{}{{F}^{\mu \nu }}=-4\pi j_{e}^{\mu }}$

(3)自旋场运动方程：

${\displaystyle D_{\nu }^{}{{R}^{(\alpha \beta )\mu \nu }}={\frac {8\pi \kappa }{{c}^{4}}}\left(s_{e}^{(\alpha \beta )\mu }+s_{g}^{(\alpha \beta )\mu }\right)}$

(4)引力场运动方程：

a. 第一形式：

${\displaystyle D_{\nu }^{}{{Q}^{(\alpha )\mu \nu }}={\frac {16\pi G}{{c}^{4}}}\left(P_{e}^{(\alpha )\mu }+P_{\gamma }^{(\alpha )\mu }+P_{f}^{(\alpha )\mu }-P_{g}^{(\alpha )\mu }-{\frac {{c}^{4}}{16\pi G}}{\bar {\beta }}\left(2{{\hat {R}}^{\mu (\alpha )}}-{\hat {R}}{{\lambda }^{(\alpha )\mu }}\right)\right)}$

b. 第二形式：

${\displaystyle {\bar {\beta }}\left(R_{\nu }^{\mu }-{\frac {1}{2}}\delta _{\nu }^{\mu }R\right)\lambda _{}^{(\alpha )\nu }+{\frac {1}{2}}\beta D_{\nu }^{}{{\bar {K}}^{(\alpha )\mu \nu }}={\frac {8\pi G}{{c}^{4}}}\left(P_{e}^{(\alpha )\mu }+P_{\gamma }^{(\alpha )\mu }+P_{f}^{(\alpha )\mu }-P_{gk}^{(\alpha )\mu }\right)}$

## 应用

• 解释宇宙加速膨胀
• 解释先锋异常
• 解释星系转动曲线
• 预言带电物体周围的引力异常
• 预言日月食的引力异常