本页使用了标题或全文手工转换

Fusor

维基百科,自由的百科全书
跳转至: 导航搜索
一個在家自行製作的Fusor[1]
工作情况

Fusor,一種實驗裝置,以電場來加熱離子,直到產生適合核聚變的情況。這是一種惯性静电约束裝置,主體内部呈真空状态,當中有兩個帶著電極的金屬籠子,產生電壓。帶著正電的離子進入這個裝置,會被電場牽引而加速、發熱,並集中在中心位置。當達到適合的溫度,離子在裝置中心的濃度也增加,若發生相互碰撞,且燃料適當(氘)即會發生核聚變

這種實驗裝置,最常見的類型,是Farnsworth–Hirsch fusor。[2]這個裝置由由美国发明家費羅·法恩斯沃斯(1964年)和罗泊特·赫舍英语Robert L. Hirsch在1967年發明。[3][4]洛斯阿拉莫斯国家实验室的William Elmore,James L. Tuck與Ken Watson,曾經提出另一個構想,[5]但是沒有實际作出來。

目前这种装置的输出功率远小于输入功率,还不能作为能源,但是可以用作实际的中子源

機制[编辑]

Fusor這個裝置包含兩個用金屬線作成的籠子,外層的金屬籠子為陽極,而內層的籠子為陰極,這兩個籠子被包覆起來,裝置內形成真空。當帶著正電的離子進入裝置,會被內層外層電極形成的電場牽引,向內部加速。隨著離子的速度增加,溫度也會隨之增加。電場牽引著離子,使它的速度上升,溫度也上升,一直加熱到可能發生核聚變的狀態。在裝置中心位置,離子濃度會增高,若發生碰撞,可能有幾個離子發生核聚變

每增加1伏特的電壓,可以使離子溫度增加11,604 kelvin。典型的磁局限融合裝置產生的電漿,約為15 keV或是170 megakelvin。只要有15,000伏特的電壓,就可以使帶著正電的離子加熱到這個程度。但因為這個裝置的電阻會使能量產生很高的耗損,因此類似的裝置,輸入功率都會大於輸出功率,通常無法實際產出能量。

歷史[编辑]

這種核融合裝置的設計概念,最早由費羅·法恩斯沃斯提出,使用惯性静电约束(IEC)的原理。費羅·法恩斯沃斯在自己的實驗室中進行設計,並取得專利。惯性静电约束這個名稱也是由他選定。

1949年,ITT公司併購了法恩斯沃斯實驗室,核融合計畫被認為無利可圖,因此遭到擱置。

1962年,費羅·法恩斯沃斯提出一項專利,以線柵間的電壓差,來牽引離子,使離子加速到發生核融合。

1964年至1967年間,罗泊特·赫舍英语Robert L. Hirsch提出一個修改過後的設計,並開始實際建造。

實作[编辑]

專業
業餘
  • 泰勒·威爾遜,在14歲時製造出Fusor,誘發核融合反應,製造出可被偵測到的中子流。在2008年至2014年間,號稱全世界最年輕製造出核融合的人。[9]
  • 蕭大為,台灣新北市理化補教老師,美國紐澤西Ratgers大學化工碩士,在2009年,以9天時間,製造出一台Fusor[10]

相關條目[编辑]

參考資料[编辑]

  1. ^ blogspot.com - Will's Amateur Science and Engineering: Fusion Reactor's First Light!, Feb 2010 (from blog)
  2. ^ Biography of Philo Taylor Farnsworth. University of Utah Marriott Library Special Collections. [2007-07-05]. 
  3. ^ Robert L. Hirsch, "Inertial-Electrostatic Confinement of Ionized Fusion Gases", Journal of Applied Physics, v. 38, no. 7, October 1967
  4. ^ P. T. Farnsworth (private communication, 1964)
  5. ^ "On the Inertial Electrostatic Confinement of a Plasma" William Elmore, James Tuck and Ken Watson, The Physics of Fluids, January 30, 1959
  6. ^ "Overview of IEC Research at Tokyo Tech." Eiki Hotta, 15th annual US-Japan IEC workshop, October 7, 2013
  7. ^ R.P. Ashley, G.L. Kulcinski, J.F. Santarius, S.K. Murali, G. Piefer, 18th IEEE/NPSS Symposium on Fusion Engineering, IEEE #99CH37050, (1999)
  8. ^ "Preliminary Results of Experimental Studies from Low Pressure Inertial Electrostatic Confinement Device", A. S. B, Y. A, A. A, Journal of Fusion Energy, May 2013
  9. ^ Yup, I built a nuclear fusion reactor. TED2012. [2014-06-24]. 
  10. ^ 打造鋼鐵人不是夢? 理化老師自製桌上型核反應爐. NOWnews. 2009-03-02. 

延伸導讀[编辑]

  • Reducing the Barriers to Fusion Electric Power; G. L. Kulcinski and J. F. Santarius, October 1997 Presented at "Pathways to Fusion Power", submitted to Journal of Fusion Energy, vol. 17, No. 1, 1998. (Abstract in PDF)
  • Robert L. Hirsch, "Inertial-Electrostatic Confinement of Ionized Fusion Gases", Journal of Applied Physics, v. 38, no. 7, October 1967
  • Irving Langmuir, Katharine B. Blodgett, "Currents limited by space charge between concentric spheres" Physical Review, vol. 24, No. 1, pp49–59, 1924
  • R. A. Anderl, J. K. Hartwell, J. H. Nadler, J. M. DeMora, R. A. Stubbers, and G. H. Miley, Development of an IEC Neutron Source for NDE, 16th Symposium on Fusion Engineering, eds. G. H. Miley and C. M. Elliott, IEEE Conf. Proc. 95CH35852, IEEE Piscataway, New Jersey, 1482–1485 (1996).
  • "On the Inertial-Electrostatic Confinement of a Plasma" William C. Elmore, James L. Tuck, Kenneth M. Watson, The Physics of Fluids v. 2, no 3, May–June, 1959
  • D-3He Fusion in an Inertial Electrostatic Confinement DevicePDF (142 KB); R. P. Ashley, G. L. Kulcinski, J.F. Santarius, S. Krupakar Murali, G. Piefer; IEEE Publication 99CH37050, pg. 35-37, 18th Symposium on Fusion Engineering, Albuquerque NM, 25–29 October 1999.
  • G. L. Kulcinski, Progress in Steady State Fusion of Advanced Fuels in the University of Wisconsin IEC Device, March 2001
  • Fusion Reactivity Characterization of a Spherically Convergent Ion Focus, T.A. Thorson, R.D. Durst, R.J. Fonck, A.C. Sontag, Nuclear Fusion, Vol. 38, No. 4. p. 495, April 1998. (abstract)
  • Convergence, Electrostatic Potential, and Density Measurements in a Spherically Convergent Ion Focus, T. A. Thorson, R. D. Durst, R. J. Fonck, and L. P. Wainwright, Phys. Plasma, 4:1, January 1997.
  • R. W. Bussard and L. W. Jameson, "Inertial-Electrostatic Propulsion Spectrum: Airbreathing to Interstellar Flight", Journal of Propulsion and Power, v 11, no 2. The authors describe the proton — Boron 11 reaction and its application to ionic electrostatic confinement.
  • R. W. Bussard and L. W. Jameson, "Fusion as Electric Propulsion", Journal of Propulsion and Power, v 6, no 5, September–October, 1990 (This is the same Bussard who conceived the Bussard Ramjet widely used in science-fiction for interstellar rocketry)
  • Todd H. Rider, "A general critique of inertial-electrostatic confinement fusion systems", M.S. thesis at MIT, 1994.
  • Todd H. Rider, "Fundamental limitations on plasma fusion systems not in thermodynamic equilibrium", Ph. D. thesis at MIT, 1995.
  • Todd H. Rider, "Fundamental limitations on plasma fusion systems not in thermodynamic equilibrium" Physics of Plasmas, April 1997, Volume 4, Issue 4, pp. 1039–1046.
  • Could Advanced Fusion Fuels Be Used with Today's Technology?; J.F. Santarius, G.L. Kulcinski, L.A. El-Guebaly, H.Y. Khater, January 1998 [presented at Fusion Power Associates Annual Meeting, 27–29 August 1997, Aspen CO; Journal of Fusion Energy, Vol. 17, No. 1, 1998, p. 33].
  • R. W. Bussard and L. W. Jameson, "From SSTO to Saturn's Moons, Superperformance Fusion Propulsion for Practical Spaceflight", 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 27–29 June 1994, AIAA-94-3269
  • Robert W. Bussard presentation video to Google Employees — Google TechTalks, 9 November 2006.
  • "The Advent of Clean Nuclear Fusion: Super-performance Space Power and Propulsion", Robert W. Bussard, Ph.D., 57th International Astronautical Congress, 2–6 October 2006.

外部链接[编辑]