# S型函数

S型函数（英語：sigmoid function，或稱乙狀函數）是一種函数，因其函數圖像形状像字母S得名。其形狀曲線至少有2個焦點，也叫“二焦點曲線函數”。S型函数是有界可微的实函数，在实数范围内均有取值，且导数恒为非负[1]，有且只有一个拐点。S型函数和S型曲线指的是同一事物。

${\displaystyle S(t)={\frac {1}{1+e^{-t}}}.}$

${\displaystyle s:=1/2+{\frac {1}{4}}t-{\frac {1}{48}}t^{3}+{\frac {1}{480}}t^{5}-{\frac {17}{80640}}t^{7}+{\frac {31}{1451520}}t^{9}-{\frac {691}{319334400}}t^{11}+O(t^{12})}$

## 常見的S型函數

${\displaystyle f(x)={\frac {1}{1+e^{-x}}}}$
${\displaystyle f(x)=\tanh x={\frac {e^{x}-e^{-x}}{e^{x}+e^{-x}}}}$
${\displaystyle f(x)=\arctan x}$
${\displaystyle f(x)=\operatorname {gd} (x)=\int _{0}^{x}{\frac {1}{\cosh t}}\,dt=2\arctan \left(\tanh \left({\frac {x}{2}}\right)\right)}$
${\displaystyle f(x)=\operatorname {erf} (x)={\frac {2}{\sqrt {\pi }}}\int _{0}^{x}e^{-t^{2}}\,dt}$
${\displaystyle f(x)=(1+e^{-x})^{-\alpha },\quad \alpha >0}$
${\displaystyle f(x)={\begin{cases}\displaystyle {\frac {\int _{0}^{x}{\bigl (}1-u^{2}{\bigr )}^{N}\ du}{\int _{0}^{1}{{\bigl (}1-u^{2}{\bigr )}^{N}\ du}}},&|x|\leq 1\\\operatorname {sgn}(x)&|x|\geq 1\\\end{cases}}\,\quad N\geq 1}$
${\displaystyle f(x)={\frac {x}{\sqrt {1+x^{2}}}}}$

## 参考文献

1. Han, Jun; Morag, Claudio. The influence of the sigmoid function parameters on the speed of backpropagation learning. Mira, José; Sandoval, Francisco (编). From Natural to Artificial Neural Computation. Lecture Notes in Computer Science 930. 1995: 195–201. ISBN 978-3-540-59497-0. doi:10.1007/3-540-59497-3_175.
• Mitchell, Tom M. Machine Learning. WCB–McGraw–Hill. 1997. ISBN 0-07-042807-7.. In particular see "Chapter 4: Artificial Neural Networks" (in particular pp. 96–97) where Mitchell uses the word "logistic function" and the "sigmoid function" synonymously – this function he also calls the "squashing function" – and the sigmoid (aka logistic) function is used to compress the outputs of the "neurons" in multi-layer neural nets.
• Humphrys, Mark. Continuous output, the sigmoid function. [2015-02-01]. （原始内容存档于2015-02-02）. Properties of the sigmoid, including how it can shift along axes and how its domain may be transformed.