克拉梅尔猜想

本页使用了标题或全文手工转换
维基百科,自由的百科全书

数学上的克拉梅尔猜想瑞典数学家哈拉尔德·克拉梅尔在1937年提出的关于素数间隙的猜想。[1]这猜想是说:

这里代表第素数。这猜想到现在仍未证出或被否证。

关于素数间隙的条件结果[编辑]

克拉梅尔也提出另一个较弱的关于素数间隙的猜想,指出在黎曼猜想成立的状况下,有

[1]

目前这方面最好的无条件结果是

而这点由Baker、Harman英语Glyn HarmanPintz英语János Pintz三人证出。[2]

另一方面E. Westzynthius于1931年证明说素数间隙成长速度快过对数,也就是说,[3]

R. A. Rankin英语R. A. Rankin改进了他的结果,[4]并证明说

埃尔德什·帕尔猜想说上式的左侧趋近于无限,而这点于2014年由Kevin Ford英语Kevin Ford (mathematician)Ben Green英语Ben Green (mathematician)Sergei Konyagin英语Sergei Konyagin陶哲轩四人组。[5]以及詹姆斯·梅纳德分别证出。[6]这两组人马在该年稍晚将这结果以这因子进行改进。[7]

探索性论证[编辑]

克拉梅尔猜想是基于本质上探索性概率模型英语Probabilistic number theory之上的,在其中一个大小为x的数是素数的概率是。而这结果又称作“克拉梅尔随机模型”(Cramér random model)或“克拉梅尔素数模型”(Cramér model of the primes)。[8]

根据克拉梅尔随机模型,以下事件的概率为一[1]

然而,Andrew Granville英语Andrew Granville指出,[9]根据迈尔定理,克拉梅尔随机模型不能适切地描述素数在短区间上的分布,而在考虑可除性后,修正版克拉梅尔模型指向A125313),其中欧拉-马斯刻若尼常数。János Pintz则认为这比值的上极限可能发散至无限;[10]

类似地,Leonard Adleman英语Leonard Adleman和Kevin McCurley写道说:

“由于H. Maier关于相邻素数间隙的工作之故,学界对克拉梅尔猜想的确实公式起了疑问…(中略)因此很有可能对于任意的常数而言,总存在一个常数,使得有一个素数。”[11]

类似地,Robin Visser写道说:

“事实上,由于Granville的工作之故,现在学界普遍相信说克拉梅尔猜想是错的。实际上也确实有迈尔定理等关于短区间的定理,和克拉梅尔模型难以兼容。”[12]

相关猜想和探索[编辑]

素数间隙函数

Daniel Shanks英语Daniel Shanks猜想说对素数间隙而言,下列比克拉梅尔猜想来得强的非病态公式成立:[13]

J.H. Cadwell[14]则提出下列何素数间隙有关的公式: 这公式和Shanks猜想在形式上一致,但同时提出了低次项。

Marek Wolf[15]则猜想说在以素数计数函数表示的状况下,最大素数间隙如下:

其中孪生素数常数的两倍,可见A005597A114907的相关内容。再一次地,这公式和Shanks猜想在形式上一致,但同时提出了如下的低次项:

Thomas Nicely(发现奔腾浮点除错误的数学家)曾对许多大素数间隙进行计算,[16]他借由下列公式来计算素数间隙与克拉梅尔猜想相契合的程度:

他写道说“即使对于已知最大的素数间隙,的值都维持在1.13左右。”

参见[编辑]

参考资料[编辑]

  1. ^ 1.0 1.1 1.2 Cramér, Harald, On the order of magnitude of the difference between consecutive prime numbers (PDF), Acta Arithmetica, 1936, 2: 23–46 [2012-03-12], doi:10.4064/aa-2-1-23-46, (原始内容 (PDF)存档于2018-07-23) 
  2. ^ R. C. Baker, G. Harman, and J. Pintz, The difference between consecutive primes. II. Proc. London Math. Soc. (3), 83 (2001), no. 3, 532-562
  3. ^ Westzynthius, E., Über die Verteilung der Zahlen die zu den n ersten Primzahlen teilerfremd sind, Commentationes Physico-Mathematicae Helsingsfors, 1931, 5: 1–37, JFM 57.0186.02, Zbl 0003.24601 (德语) .
  4. ^ R. A. Rankin, The difference between consecutive prime numbers, J. London Math. Soc. 13 (1938), 242-247
  5. ^ Ford, Kevin; Green, Ben; Konyagin, Sergei; Tao, Terence. Large gaps between consecutive prime numbers. Annals of Mathematics. Second series. 2016, 183 (3): 935–974. arXiv:1408.4505可免费查阅. doi:10.4007/annals.2016.183.3.4可免费查阅. 
  6. ^ Maynard, James. Large gaps between primes. Annals of Mathematics. Second series. 2016, 183 (3): 915–933. arXiv:1408.5110可免费查阅. doi:10.4007/annals.2016.183.3.3可免费查阅. 
  7. ^ Ford, Kevin; Green, Ben; Konyagin, Sergei; Maynard, James; Tao, Terence. Long gaps between primes. Journal of the American Mathematical Society. 2018, 31: 65–105. arXiv:1412.5029可免费查阅. doi:10.1090/jams/876. 
  8. ^ Terry Tao, 254A, Supplement 4: Probabilistic models and heuristics for the primes (optional), section on The Cramér random model, January 2015.
  9. ^ Granville, A., Harald Cramér and the distribution of prime numbers (PDF), Scandinavian Actuarial Journal, 1995, 1: 12–28 [2007-06-05], doi:10.1080/03461238.1995.10413946, (原始内容 (PDF)存档于2015-09-23) .
  10. ^ János Pintz, Very large gaps between consecutive primes, Journal of Number Theory 63:2 (April 1997), pp. 286–301.
  11. ^ Leonard Adleman英语Leonard Adleman and Kevin McCurley, Open Problems in Number Theoretic Complexity, II. Algorithmic number theory (Ithaca, NY, 1994), 291–322, Lecture Notes in Comput. Sci., 877, Springer, Berlin, 1994.
  12. ^ Robin Visser, Large Gaps Between Primes, University of Cambridge (2020).
  13. ^ Shanks, Daniel, On Maximal Gaps between Successive Primes, Mathematics of Computation (American Mathematical Society), 1964, 18 (88): 646–651, JSTOR 2002951, Zbl 0128.04203, doi:10.2307/2002951可免费查阅 .
  14. ^ Cadwell, J. H., Large Intervals Between Consecutive Primes, Mathematics of Computation, 1971, 25 (116): 909–913, JSTOR 2004355, doi:10.2307/2004355可免费查阅 
  15. ^ Wolf, Marek, Nearest-neighbor-spacing distribution of prime numbers and quantum chaos, Phys. Rev. E, 2014, 89 (2): 022922, Bibcode:2014PhRvE..89b2922W, PMID 25353560, S2CID 25003349, arXiv:1212.3841可免费查阅, doi:10.1103/physreve.89.022922 
  16. ^ Nicely, Thomas R., New maximal prime gaps and first occurrences, Mathematics of Computation, 1999, 68 (227): 1311–1315, Bibcode:1999MaCom..68.1311N, MR 1627813, doi:10.1090/S0025-5718-99-01065-0可免费查阅 .

外部链接[编辑]