本页使用了标题或全文手工转换

标准差

维基百科,自由的百科全书
(重定向自均方差
跳转至: 导航搜索
Confusion grey.svg
提示:本条目的主题不是标准误差

标准差(又称均方差英语:Standard Deviation,SD),数学符号σ(sigma),在概率统计中最常使用作为测量一组数值的离散程度之用。标准差定义:为方差算术平方根,反映组内个体间的离散程度;标准差与期望值之比为标准离差率。测量到分布程度的结果,原则上具有两种性质:

  1. 为非负数值(因为开平方后再做平方根);
  2. 与测量资料具有相同单位(这样才能比对)。

一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。其公式如下所列。

标准差的概念由卡尔·皮尔逊引入到统计中。

阐述及应用[编辑]

简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。

例如,两组数的集合{0, 5, 9, 14}和{5, 6, 8, 9}其平均值都是7,但第二个集合具有较小的标准差。

表述“相差k个标准差”,即在 X̄ ± kS样本(Sample)范围内考量。

标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。

标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。

总体的标准差[编辑]

基本定义[编辑]

为平均值()。

简易口诀:离均差平方和的平均;方均根。

简化计算公式[编辑]

上述公式可以如下代换而简化:

所以:

根号里面,亦即方差)的简易口诀为:“平方和的平均”减去“平均的平方”。

总体为随机变量[编辑]

随机变量的标准差定义为:

须注意并非所有随机变量都具有标准差,因为有些随机变量不存在期望值。 如果随机变量具有相同概率,则可用上述公式计算标准差。

离散随机变量的标准差[编辑]

是由实数构成的离散随机变量英语:discrete random variable),且每个值的概率相等,则的标准差定义为:

 ,其中 

换成用来写,就成为:

 ,其中 

目前为止,与总体标准差的基本公式一致。

然而若每个可以有不同概率,则的标准差定义为:

 ,其中 

连续随机变量的标准差[编辑]

为概率密度连续随机变量英语:continuous random variable),则的标准差定义为:

其中

标准差的特殊性质[编辑]

对于常数和随机变量

其中:
  • 表示随机变量协方差
  • 表示,即的方差),对亦同。

样本的标准差[编辑]

在真实世界中,找到一个总体的真实的标准差并不实际。大多数情况下,总体标准差是通过随机抽取一定量的样本并计算样本标准差估计的。

从一大组数值当中取出一样本数值组合,常定义其样本标准差

样本方差是对总体方差无偏估计。之所以中的分母要用而不是像总体样本差那样用,是因为自由度,这是由于存在约束条件

范例[编辑]

这里示范如何计算一组数的标准差。例如一群孩童年龄的数值为{ 5, 6, 8, 9 }:

  • 第一步,计算平均值
(因为集合里有4个数),分别设为:
(此为平均值)
  • 第二步,计算标准差
(此为标准差)

正态分布的规则[编辑]

深蓝区域是距平均值小于一个标准差之内的数值范围,在正态分布中,此范围所占比率为全部数值之68%;两个标准差之内(深蓝,蓝)的比率合起来为95%;三个标准差之内(深蓝,蓝,浅蓝)的比率合起来为99.7%

在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68%数值分布在距离平均值有1个标准差之内的范围,约95%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”。

标准差与平均值之间的关系[编辑]

一组数据的平均值及标准差常常同时作为参考的依据。从某种意义上说,如果用平均值来考量数值的中心的话,则标准差也就是对统计的分散度的一个“自然”的测度。因为由平均值所得的标准差要小于到其他任何一个点的标准差。较确切的叙述为:设实数,定义函数

使用微积分或者通过配方法,不难算出在下面情况下具有唯一最小值:

几何学解释[编辑]

几何学的角度出发,标准差可以理解为一个从维空间的一个点到一条直线的距离的函数。举一个简单的例子,一组数据中有3个值,。它们可以在3维空间中确定一个。想像一条通过原点的直线。如果这组数据中的3个值都相等,则点就是直线上的一个点,的距离为0,所以标准差也为0。若这3个值不都相等,过点垂线垂直于于点,则的坐标为这3个值的平均数:

运用一些代数知识,不难发现点与点之间的距离(也就是点到直线的距离)是。在维空间中,这个规律同样适用,把换成就可以了。

外部链接[编辑]