本页使用了标题或全文手工转换

C++

维基百科,自由的百科全书
跳转至: 导航搜索
C++
38254-new folder-9.svg
编程范型 多范型面向对象编程程序编程泛型编程
设计者 比雅尼·斯特劳斯特鲁普
发行时间 1983年,​35年前​(1983
最新发行时间 ISO/IEC 14882:2017标准文档(需要购买)(2017年12月)
最新测试版发行日期 C++20(N4713)(2017年11月27日)
类型系统 静态类型强类型不安全

C++是一种广泛使用的计算机程序设计语言。它是一种通用程序设计语言静态数据类型检查,支持多重编程范式,例如过程化程序设计数据抽象化面向对象程序设计泛型程序设计基于原则设计等。

比雅尼·斯特劳斯特鲁普博士在贝尔实验室工作期间在20世纪80年代发明并实现了C++。起初,这种语言被称作“C with Classes”(“包含类别的C语言”),作为C语言的增强版出现。随后,C++不断增加新特性。虚函数(virtual function)、操作符重载(operator overloading)、多重继承(multiple inheritance)、模板(template)、异常处理(exception)、RTTI(Runtime type information)、名字空间(namespace)逐渐纳入标准。1998年,国际标准组织(ISO)颁布了C++程序设计语言的第一个国际标准ISO/IEC 14882:1998,目前最新标准为ISO/IEC 14882:2017。根据《C++编程思想》(Thinking in C++)一书所评述的,C++与C的效率往往相差在±5%之间。

C++语言发展大概可以分为三个阶段:第一阶段从80年代到1995年。这一阶段C++语言基本上是传统类型上的面向对象语言,并且凭借着接近C语言的效率,在工业界使用的开发语言中占据了相当大份额;第二阶段从1995年到2000年,这一阶段由于标准模板库(STL)和后来的Boost等程序库的出现,泛型程序设计在C++中占据了越来越多的比重性。当然,同时由于JavaC#等语言的出现和硬件价格的大规模下降,C++受到了一定的冲击;第三阶段从2000年至今,由于以LokiMPL(Boost)等程序库为代表的产生式编程模板元编程的出现,C++出现了发展历史上又一个新的高峰,这些新技术的出现以及和原有技术的融合,使C++已经成为当今主流程序设计语言中最复杂的一员。

发展历史[编辑]

比雅尼·斯特劳斯特鲁普(Stroustrup)工作起于1979年的C with Classes。这个构思起源于Stroustrup做博士论文时的一些程序撰写经验。他发现Simula具备很利于大型软件开发的特点,但Simula的运行速度太慢,无法对现实需求发挥功效;BCPL虽快得多,但它过于低级的特性,使其不适于大型软件的开发。当Stroustrup开始在贝尔实验室工作时,他有分析UNIX核心关于分布式计算的问题。回想起他的博士论文经验,Stroustrup开始为C语言增强一些类似Simula的特点。之所以选择C,是因为它适于各种用途、快速和可移植性。除了CSimula之外,同时也从其它语言中获取灵感,如ALGOL 68AdaCLU以及ML。刚开始时,类别、派生类、存储类型检查、内联和默认参数特性,都是通过Cfront引入C语言之中。1985年10月出现了第一个商业化发布。

1983年,C with Classes改命名为C++。加入了新的特性,其中包括虚函数、函数名和运算符重载、参考、常量、用户可控制的自由空间存储区控制、改良的类型检查,以及新的双斜线(//)单行注解风格。1985年,发布第一版《C++程序设计语言》,提供一个重点的语言参考,至此还不是官方标准。1989年,发布了Release 2.0。引入了多重继承、抽象类别、静态成员函数、常量成员函数,以及成员保护。1990年,出版了The Annotated C++ Reference Manual。这本书后来成为标准化的基础。稍后还引入了模板异常处理名字空间、新的强制类型转换,以及布尔类型。

随着C++语言的演变,也逐渐演化出相应的标准程序库。最先加进C++标准库的是流I/O程序库,其用以取代传统的C函数,如printfscanf。随后所引入的程序库中最重要的便是标准模板库,简称STL

多年后,一个联合的ANSI-ISO委员会于1998年对C++标准化(ISO/IEC 14882:1998)。在官方发布1998标准的若干年后,委员会处理缺陷报告,并于2003年发布一个C++标准的修正版本。2005年,一份名为Library Technical Report 1(简称TR1)的技术报告发布。虽然还不是官方标准的一部分,不过它所提供的几个扩展可望成为下一版C++标准的一部分。几乎所有目前仍在维护的C++编译器皆已支持TR1。

目前最新的C++标准是2017年12月发布的ISO/IEC 14882:2017[1],又称C++17C++1z

虽然C++免专利,但标准文件本身并不是免费的,尽管标准文档不是免费的,但是很容易从网络中获取,最简单的就是C++标准文档之前的最后一次草稿版本,它与标准的差别几乎只在于排版上。

C++名字的由来[编辑]

C++这个名字是Rick Mascitti于1983年中所建议的,并于1983年12月首次使用。更早以前,尚在研究阶段的发展中语言曾被称为“new C”,之后是“C with Classes”。在计算机科学中,C++仍被称为C语言的上层结构。它最后得名于C语言中的“++”操作符(其对变量进行递增)。而且在共同的命名约定中,使用“+”以表示增强的程序。Stroustrup说:“这个名字象征着源自于C语言变化的自然演进”。C+是一个和C/C++无关的早期编程语言。

Rick Mascitti在1992年被非正式地问起名字的由来,他表示这是在半开玩笑中说出的。他从没想过C++会成为这门语言的正式名字。

有一个关于C++名字的笑话是,当你使用后缀++时,附加只发生在运算之后(因此,它应该是++C,而不是C++,这个笑话是说时下某些程序员还在以使用C的方式使用C++,这通常被一些权威著作认为是不正确的)。

标准化[编辑]

由ISO/IEC JTC1/SC22/WG21进行。已经出版的标准文档如下:

发布时间 文档 通称 备注
2017 ISO/IEC 14882:2017[2] C++17 第五个C++标准
2017 ISO/IEC TS 22277:2017[3] coroutines TS 协程库扩展
2017 ISO/IEC TS 21425:2017[4] ranges TS 提供范围机制
2017 ISO/IEC TS 19568:2017[5] library fundamentals TS 标准库扩展
2016 ISO/IEC TS 19571:2016[6] concurrency TS 用于并发计算的扩展
2015 ISO/IEC TS 19217:2015[7] concepts TS 用于优化编译期信息
2015 ISO/IEC TS 19841:2015[8] TM TS 事务型内存操作
2015 ISO/IEC TS 19570:2015[9] parallelism TS 用于并行计算的扩展
2015 ISO/IEC TS 18822:2015[10] filesystem TS 文件系统
2014 ISO/IEC 14882:2014[11] C++14 第四个C++标准
2011 ISO/IEC TR 24733:2011[12] - 十进制浮点数扩展
2011 ISO/IEC 14882:2011[13] C++11 第三个C++标准
2010 ISO/IEC TR 29124:2010[14] - 数学函数扩展
2007 ISO/IEC TR 19768:2007[15] C++TR1 C++技术报告:库扩展
2006 ISO/IEC TR 18015:2006[16] - C++性能技术报告
2003 ISO/IEC 14882:2003[17] C++03 第二个C++标准
1998 ISO/IEC 14882:1998[18] C++98 第一个C++标准

设计原则[编辑]

在《C++语言的设计和演化》(1994)中,Bjarne Stroustrup描述了他在设计C++时,所使用的一些原则。知道这些原则有助于理解C++为何会是现在这个样子。以下总结了一些原则,详尽的内容可参阅《C++语言的设计和演化》:

  • C++设计成直接的和广泛的支持多种程序设计风格(过程化程序设计数据抽象化面向对象程序设计泛型程序设计)。
  • C++设计成给程序设计者更多的选择,即使可能导致程序设计者选择错误。
  • C++设计成尽可能与C兼容,借此提供一个从C到C++的平滑过渡。
  • C++避免平台限定或没有普遍用途的特性。
  • C++不使用会带来额外开销的特性。
  • C++设计成无需复杂的程序设计环境。

标准程序库[编辑]

1998的C++标准分为两个部分:核心语言C++标准程序库;后者包含了大部分标准模板库和C标准程序库的稍加修改版本。存在许多不属于标准部分的C++程序库,且使用外部链接,程序库甚至可以用C撰写。

C++标准程序库充分吸收了C标准程序库,并佐以少许的修改,使其与C++良好的运作。另一个大型的程序库部分,是以标准模板库(STL)为基础,STL于1994年2月正式成为ANSI/ISO C++。它提供了实用的工具,如容器(如:向量链表),迭代器(广义指针)提供容器以类似数组的访问方式,以及算法进行搜索和排序的运算。此外还提供了(multi)map(关系数组)和(multi)set,它们都使用兼容的界面。因此,以下成为可能,使用模板撰写泛型算法,它可以和任何容器或在任何以迭代器定义的序列上运作。如同C,使用#include指令包含标准表头,即可访问程序库里的功能。C++提供69个标准表头,其中19个不再赞成使用。

使用标准库(例如:使用std::vectorstd::string来取代C风格的数组)有助于导向更安全和更灵活的软件。 STL在纳入C++标准以前,是来自HP和后来的SGI的第三方程式库,标准中并未称之为“STL”,它只是标准库中的一部分,但仍有许多人使用这个名称,以别于其它的标准库(输入/输出流、国际化、诊断、C程序库子集,等等)。 另外,如std::basic_string此类标准委员会添加的接口,有时也被误认为STL;实际上它们并不存在于原始的SGI STL中,在标准化后SGI STL才从标准库吸收加入其中。

C++中的特色[编辑]

和C语言相比,C++引入了更多的特性,包括:陈述性宣告,类似函数的强制转型,new/delete操作符,布尔类型,参考类型,默认参数,函数重载,名字空间,类别(包括所有和类别相关的特性,如继承、成员函数、虚函数、抽象类别和构造函数),操作符重载,模板,::操作符,异常处理和运行时期识别。

和普遍认为的相反,C++不是第一个正式引入const关键字的语言。80年代早期,Bjarne Stroustrup和Dennis Retchie讨论之后提供了在C语言中readonly/writeonly的实现机制,并在带类别的C中获取了一定经验。关键字const正式引入C语言是在ANSI C89。这早于第一个C++国际标准近十年,但此时const已被C++实现普遍采用。

C++在某些案例中(见下“与C不兼容之处”),进行比C还要多的类型检查。

以“//”起始作为注解起源自C的前身BCPL,而后被重新引入到C++。

C++的一些特性,C不久之后也采用了,包括在for循环的括号中声明,C++风格的注解(使用//符号,和inline,虽然C99定义的inline关键字与C++的定义不兼容。不过,C99也引入了不存在于C++的特性,如:可变参数,和以数组作为参数的较佳处理;某些C++编译器可能实现若干特性,以作为扩展,但其余部分并不匹配现存的C++特性)

一个常见的混淆其实只是一个微妙的术语问题:由于它的演化来自C,在C++中的术语对象和C语言一样是意味着内存区域,而不是类的实例,在其它绝大多数的面向对象语言也是如此。举例来说,在C和C++中,语句int i;定义一个int类型的对象,这就是变量的值i将在赋值时,所存入的内存区域。

C++语言中的const关键字[编辑]

const是一个C和C++语言的关键字,意思是宣告一个常量(不能改变的变量),即只读。使用const在一定程度上可以提高程序的安全性和可靠性,也便于实现对此进行优化(如把只读对象放入ROM中)。const作为类型限定符,是类型的一部分。

以下是和C语言兼容的用法:

1 int m = 1, n = 2;   // int 类型的对象
2 const int a = 3;    // const int 类型的对象
3 int const b = 4;    //同上
4 const int *p        //指向 const int 类型对象的指针
5 int const *q;       //同上
6 int *const x;       //指向 int 类型对象的 const 指针;注意 const 的位置
7 const int *const r; //指向 const int 类型对象的 const 指针
8 int const *const t; //同上

但是,const在C++中有更强大的特性。它允许在编译时确定作为真正的常量表达式。例如,

1 const int max_len = 42;
2 int a[max_len];

此前C语言并不支持这样的用法,直到C99允许用变量作为数组长度(需要注意的是C99中的VLA支持运行期确定数组长度,但C++从未支持)。此外,C++中,命名空间作用域的const对象的名称隐含内部链接。这意味着直接在头文件里定义const对象被多个源文件包含时,也不会重定义。

在C++11及之后的C++标准中,推荐使用拥有更严格语义的constexpr限定符来表示一个可以出现在常量表达式中的变量。

与C不兼容之处[编辑]

C++有时被认为是C的超集(superset),但这并不严谨。

各个版本的ISO/IEC 14882的附录C中都指出了C++和ISO C的一些不兼容之处。

大部分的C代码可以很轻易的在C++中正确编译,但仍有少数差异,导致某些有效的C代码在C++中失效,或者在C++中有不同的行为。

最常见的差异之一是,C允许从void*隐式转换到其它的指针类型,但C++不允许。下列是有效的C代码:

1 // 從void *隱式轉換為int *
2 int *i = malloc(sizeof(int) * 5);

但要使其在C和C++两者皆能运作,就需要使用显式转换:

1 int *i = (int *)malloc(sizeof(int) * 5);

另一个常见的可移植问题是,C++定义了很多的新关键字,如newclass,它们在C程序中,是可以作为识别字(例:变量名)的。

C99去除了一些不兼容之处,也支持了一些C++的特性,如//注解,以及在代码中混合宣告。不过C99也纳入几个和C++冲突的新特性(如:可变长度数组、原生复数类型和复合逐字常量),而C++11已经加入了兼容C99预处理器的特性。

由于C++函数和C函数通常具有不同的名字修饰调用约定,所有在C++中调用的C函数,须放在extern "C" { /* C函数声明 */ }之内。

C++的Hello World程序[编辑]

下面这个程序显示“Hello, world!”然后结束运行:

1 #include <iostream>
2 int main() {
3     std::cout << "Hello, world!" << std::endl;
4     return 0;
5 }

这里也可以使用using指令减少重复的std:::

1 #include <iostream>
2 using namespace std;
3 int main() {
4     cout << "Hello, world!" << endl;
5     return 0;
6 }

你可以用“\n”代替以上代码里的“endl”,不过必须用在句子的后端。请不要把斜线(/)和反斜线(\)混淆。

1 std::cout << "Hello, world!\n";

但需要知道的是, std::endl 不仅仅会在某个输出流中插入换行字符,还将执行输出流的 flush() 函数。


根据ISO C++的规定,全局main函数必须返回int。 以下的形式是必须被实现支持的:

1 int main() {
2     // ...
3 }

以及

1 int main(int argc, char *argv[]) {
2     // ...
3 }

尽管如此,但在一些编译器(例如Visual C++)上,

1 // 永远不要这么写,除非放弃相容性
2 void main() {
3     // ...
4 }

也被支持。

语言特性[编辑]

操作符[编辑]

预处理器[编辑]

C++主要有三个编译阶段:预处理、转译成目标代码和链接(最后的两个阶段一般才视为真正的“编译”)。在第一阶段,预处理,会将预处理器指令替换成源代码,然后送到下一个编译阶段。

预处理器指令和宏[编辑]

预处理指令的运作方式是根据用户定义的规则,简单的把记号字符序列置换成其它的记号字符序列。它们进行宏置换、含入其它的文件(由底层至高级的特性,例如包含模块/包/单元/组件)、条件式编译和条件式含入。例如:

#define PI 3.1415926535897932384626433832795028841971693993751

每次在源代码中出现的PI,将会替换为3.1415926535897932384626433832795028841971693993751。另一个普遍的例子是

#include <iostream>

它从标准库表头iostream含入(导入)所有的符号。除了以上提到的常用指令以外,还有几个额外的预处理器指令,可以用来控制编译流程、条件式含入或排除代码区块等等。

参阅预处理器C预处理器

模板[编辑]

模板(Template)指C++编程语言中的函数模板(function template)与类别模板(class template),这种观念是取材自Simula的泛型程序设计。它采用typenameclass两个关键字,来标识模板类别的类型参数。C++11C++14分别引入了类型别名模板和变量模板。

类别与对象[编辑]

在面向对象对象程序设计术语中,对象(object)是数据(data)和处理数据的指令(instructions)的联合(association)。模拟(simulate)实际世界(real-world),对象有三种特质(characteristics):状态(State)、行为(Behavior)、同一性身份英语Identity (object-oriented programming),并且使用消息(message)来引发彼此的交互。类别(class)为对象的蓝图或工厂,定义了对象的抽象特质,包括对象的属性特质和对象的行为特质,属性的值即是对象的状态,行为即是对象能够做的事。

C++为类别构成式面向对象程序设计语言(class-based object-oriented programming language),类别概念具现化(reification)地作为二等公民(second-class citizen)出现在C++语言当中,在语法中明确地使用类别来做到数据抽象化、封装、模块化、继承、子类型多态、对象状态的自动初始化。C++中,一个类别即为一个类型,加上封装,一个类别即为一个抽象数据类型(Abstract Data Type,ADT),继承、多态、模板都加强了类别的可抽象性。在C++可以使用class或struct这两个关键字宣告类别(class),而使用new操作符实例化类别产生的实例(instance)即为对象,是一等公民。C/C++以数据成员(data member)表达属性,以成员函数(member function)表达行为。

声明一个Car class:

1 class Car {
2 private:
3     int IsRunning;
4 public:
5     Run();
6 };

但是仍然需要注意,严格来说,C++中对象的概念和C的对应概念接近,表示的是具有特定类型的存储,而非面向对象意义上的“对象”:一个对象不一定是类类型的。此外,C++意义上的“实例”仅指模板实例化的结果,而并不指对象。作为对比,Java的“对象”和“实例”的概念和这里的使用一致。

封装[编辑]

封装(Encapsulation)是将数据和处理数据的程序(procedure)组合起来,仅对外公开接口(interface),达到信息隐藏(information hiding)的功能。封装的优点是能减少耦合(Coupling)。C++、Java、C# 等语言定义对象都是在语法中明确地使用类别(Class)来做到封装。

C++的类对其成员(包括数据成员、函数成员)分为三种封装状态:

  • 公有(public):类别的用户可以访问、使用该类别的此种成员。
  • 保护(protected):该类别的派生类可以访问、使用该类别的此成员。外界用户不可以访问、使用这种成员。
  • 私有(private):只有类别自身的成员函数可以访问、使用该类别的此成员。

一般地,C++类的对外接口设定为公有成员;类别内部使用的数据、函数设定为私有成员;供派生自该类别的子类使用的数据、函数设定为保护成员。

继承[编辑]

继承(Inheritance)是指子类(subclass)继承超类别(superclass),会自动获取超类别除私有特质外的全部特质,同一类别的所有实例都会自动有该类别的全部特质,做到代码再用(reuse)。C++只支持类别构成式继承,虽然同一类别的所有实例都有该类别的全部特质,但是实例能够共享的实例成员只限成员函数,类别的任何实例数据成员乃每个实例独立一份,因此对象间并不能共享状态,除非特质为参考类型的属性,或使用指针来间接共享。C++支持的继承关系为:

  • 公有继承(public inheritance):最常用继承关系,含义是“is-a”关系,代表了在完全使用公有继承的对象类别之间的层次结构体系(hierarchy)。
  • 保护继承(protected inheritance):基类的公有或保护内容可以被派生类,以及由此派生的其他类别使用。但是基类对外界用户是不可见的。派生类的用户不能访问基类的内容、不能把派生类别转换为基类的指针或引用。
  • 私有继承(private inheritance):基类的公有或保护内容仅可以被派生类访问,含义是“implemented-in-term-of”。但基类对派生类的子类或派生类的用户都是不可见的。派生类的子类或派生类的用户都不能访问基类的内容、不能把派生类转换为基类的指针或引用。

C++支持多重继承(multiple inheritance,MI)。多重继承(multiple inheritance,MI)的优缺点一直广为用户所争议,许多语言并不支持多重继承,而改以单一继承和接口继承(interface inheritance),而另一些语言改以单一继承和混入(mixin)。C++支持虚继承(Virtual Inheritance)用以解决多重继承的菱形问题

多态[编辑]

Polymorphism

Ad Hoc                   Universal
Overloading   Coercion       Inclusion  Parametric

除了封装与继承外,C++还提供了多态功能,面向对象的精神在于多态(Polymorphism),一般的多态,是指动态多态,系使用继承和动态绑定(Dynamic Binding)实现,使用多态可创建起继承体系(Inheritance hierarchy)。类别(class)与继承只是达成多态中的一种手段,所以称面向对象而非面向类。

多态又分成静态多态(Static Polymorphism)与动态多态(Dynamic Polymorphism)。C++语言支持的动态多态必须结合继承和动态绑定(Dynamic Binding)方式实现。静态多态是指编译时决定的多态,包括重载和以模板(template)实现多态的方法即参数化类型(Parameterized Types),是使用宏(marco)的“代码膨胀法”达到多态效果。

类型转换(type cast)也是一种区域(ad hoc)多态的概念,C++提供dynamic_cast, static_cast等运算对象来实现强制类型转换(Coercion)。

运算对象重载(operator overloading)或函数重载(function overloading)也算是多态的概念。

分析和处理C++源代码[编辑]

C/Java/C#都可以用某种 LR 剖析器(或其变形)分析文法[来源请求],但C++是个著名的例外:请看下面的代码。

1 #include <vector>
2 #include <string>
3 std::vector< std::vector<std::string> >table1;
4 std::vector<std::vector<std::string>>table2;

上面的 table1 显然是一个字符串的二维数组,而 table2 则未必能通过编译:如果严格遵循 LR 分析过程,串 >> 会被解释为右移运算符而非两个代表模板参数表结束的右尖括号,因此出现编译错误,必须以 table1 的方式用空格区分。(然而在 C++11 中,特别规定了当处理模板时 >> 被优先视为两个 >。)

争议[编辑]

“在这12年里,C++用户人数大约每七个月半增加一倍”是许多C++相关文件必引的一段话;然而,时至今日新语言层出不穷,用户人数已不太可能以如此速度增长。分析机构EvansData定期对开发人员展开调查,其数据显示,以C++为工具的开发人员在整个开发界所占的比例由1998年春天的76%下降至2004年秋的46%。

一部分Unix/C程序员对C++语言深恶痛绝,他们批评的理由如下:

  1. STL以非常丑陋的方式封装了各种数据结构和算法,写出来的代码难以理解、不美观。
  2. C++编译器复杂和不可靠,不适合构建人命关天类型的程序。
  3. Ian Joyner认为面向对象技术徒增学习成本,不如面向过程的C语言简单容易使用,尤其是在系统软件的构建上。[19]

概括说来UNIX程序员批评C++主要是由于UNIX社区与C++社区的文化差异。 [20]

一个值得注意的事情是Linux之父Linus Torvalds曾经炮轰C++;图灵奖得主尼克劳斯·维尔特也曾经批评C++语言太复杂、语法语义模糊,是“拙劣工程学”的成果。

事实上,对于C++语言的批评并不只来源于Unix/Unix-Like系统下的程序员。就像C++语言本身是一个跨平台的语言一样,对C++的批评并不局限于Unix/Unix-Like系统用户。

一个确定的观点是:C++是一门复杂的语言、这门语言拥有过多的特性从而难以彻底掌握;C++的某些库难以学习、掌握并应用于实际当中;很多程序员都认为C++是一个过度设计的程序语言。

参阅[编辑]

参考文献[编辑]

引用[编辑]

  1. ^ ISO/IEC 14882:2017. 
  2. ^ ISO/IEC 14882:2017. 
  3. ^ ISO/IEC TS 22277:2017. 
  4. ^ ISO/IEC TS 21425:2017. 
  5. ^ ISO/IEC TS 19568:2017. 
  6. ^ ISO/IEC TS 19571:2016. 
  7. ^ ISO/IEC TS 19217:2015. 
  8. ^ ISO/IEC TS 19570:2015. 
  9. ^ ISO/IEC TS 19570:2015. 
  10. ^ ISO/IEC TS 18822:2015. 
  11. ^ ISO/IEC 14882:2014. 
  12. ^ ISO/IEC TR 24733:2011. 
  13. ^ ISO/IEC 14882:2011. 
  14. ^ ISO/IEC TR 29124:2010. 
  15. ^ ISO/IEC TR 19768:2007. 
  16. ^ ISO/IEC TR 18015:2006. 
  17. ^ ISO/IEC 14882:2003. 
  18. ^ ISO/IEC 14882:1998. 
  19. ^ Ian Joyner著的《C++?? A Critique of C++ and Programming and Language Trends of the 1990s》第3章51节
  20. ^ Eric Raymond著的《unix编程艺术》一书第十四章第四节“语言评估”

来源[编辑]

  • The C++ Programming Language: Special Edition
  • Stanley B. Lippman,Josée Lajoie,Barbara E. Moo. C++ Primer. (有中文译本:人民邮电出版社出版,ISBN 978-7-115-14554-3
  • Luca Cardelli and Peter Wegner, "On Understanding Types, Data Abstraction, and Polymorphism", Computing Surveys, Volume 17, Number 4, pp. 471–522, December 1985
  • Scott Meyers,Effective C++: 50 Specific Ways to Improve Your Programs and Design (2nd Edition) (Addison-Wesley Professional Computing Series)
  • Scott Meyers,Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library (Addison-Wesley Professional Computing Series)
  • The C++ Standard Library: A Tutorial and Reference
  • C++ Templates: The Complete Guide

外部链接[编辑]