蒙提霍尔问题

维基百科,自由的百科全书
跳到导航 跳到搜索
蒙提霍尔问题图解

蒙提霍尔问题,亦称为蒙特霍问题三门问题(英文:Monty Hall problem),是一个源自博弈论数学游戏问题,大致出自美国电视游戏节目Let's Make a Deal英语Let's Make a Deal。问题的名字来自该节目的主持人蒙蒂·霍尔

这个游戏的玩法是:参赛者会看见三扇关闭了的门,其中一扇的后面有一辆汽车或者是奖品,选中后面有车的那扇门就可以赢得该汽车或奖品,而另外两扇门后面则各藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时候,知道门后情形的节目主持人会开启剩下两扇门的其中一扇,露出其中一只山羊。主持人其后会问参赛者要不要换另一扇仍然关上的门。问题是:换另一扇门会否增加参赛者赢得汽车的机会率?如果严格按照上述的条件的话,答案是会。—换门的话,赢得汽车的机率是2/3。

这条问题亦被叫做蒙提霍尔悖论:虽然该问题的答案在逻辑上并不自相矛盾,亦不违反直觉。这问题曾引起一阵热烈的讨论。

问题与解答[编辑]

问题[编辑]

以下是蒙提霍尔问题的一个著名的叙述,来自Craig F. Whitaker于1990年寄给《展示杂志》(Parade Magazine)玛丽莲·沃斯·莎凡特(Marilyn vos Savant)专栏的信件:

假设你正在参加一个游戏节目,你被要求在三扇门中选择一扇:其中一扇后面有一辆车;其馀两扇后面则是山羊。你选择了一道门,假设是一号门,然后知道门后面有什么的主持人,开启了另一扇后面有山羊的门,假设是三号门。他然后问你:“你想选择二号门吗?”转换你的选择对你来说是一种优势吗?

以上叙述是对Steve Selvin于1975年2月寄给American Statistician杂志的叙述的改编版本。如上文所述,蒙提霍尔问题是游戏节目环节的一个引申;蒙提·霍尔在节目中的确会开启一扇错误的门,以增加刺激感,但不会容许玩者更改他们的选择。如蒙提·霍尔寄给Selvin的信中所写:

如果你上过我的节目的话,你会觉得游戏很快—选定以后就没有交换的机会。
(letsmakeadeal.com)

Selvin在随后寄给American Statistician的信件中(1975年8月)首次使用了“蒙提霍尔问题”这个名称。

一个实质上完全相同的问题于1959年以“三囚犯问题”(three prisoners problem)的形式出现在马丁·加德纳的《数学游戏》专栏中。其版本的选择过程叙述得十分明确,避免了《展示杂志》版本里隐含的前提条件。

这条问题的首次出现,可能是在1889年约瑟夫·贝特朗所著的Calcul des probabilités一书中。在这本书中,这条问题被称为“贝特朗箱子悖论”(Bertrand's Box Paradox)。

Mueser和Granberg透过在主持人的行为身上加上明确的限制条件,提出了对这个问题的一种不含糊的陈述:

  • 参赛者在三扇门中挑选一扇。他并不知道内里有甚么。
  • 主持人知道每扇门后面有什么。
  • 主持人必须开启剩下的其中一扇门,并且必须提供换门的机会。
  • 主持人永远都会挑一扇有山羊的门。
    • 如果参赛者挑了一扇有山羊的门,主持人必须挑另一扇有山羊的门。
    • 如果参赛者挑了一扇有汽车的门,主持人随机(概率均匀分布)在另外两扇门中挑一扇有山羊的门。
  • 参赛者会被问是否保持他的原来选择,还是转而选择剩下的那一道门。

转换选择可以增加参赛者的机会吗?

解答[编辑]

玛丽莲·沃斯·莎凡特在1980年代中期因跻身《健力士世界纪录》中的智商纪录保持人而成名(结果为185)。当时她的答复在《大观杂志》刊出之后引起举世关注。她的解答彻底违反直觉,并引起众多数学家的质疑。但随后的阐释让质疑者颜面无光。显然,莎凡特的答案是可以:当参赛者转向另一扇门而不是继续维持原先的选择时,赢得汽车的机会将会加倍。

1.
Monty-CurlyPicksCar.svg
主持人挑出
任一只羊
Pfeil.png

Pfeil.png
Monty-DoubleSwitchfromCar.svg
参赛者选择汽车
(1/3概率)
转换后失败
2.
Monty-CurlyPicksGoatA.svg 主持人必须
挑出B羊

Pfeil.png
Monty-SwitchfromGoatA.svg
参赛者选择A羊
(1/3概率)
转换后获胜
3.
Monty-CurlyPicksGoatB.svg 主持人必须
挑出A羊

Pfeil.png
Monty-SwitchfromGoatB.svg
参赛者选择B羊
(1/3概率)
转换后获胜
参赛者最初选择时有1/3的相同概率选择汽车、A羊和B羊,转换后的获胜概率为2/3。

有三种可能的情况,全部都有相等的可能性(1/3):

  • 参赛者挑汽车,主持人挑两头羊的任何一头。转换将失败。
  • 参赛者挑A羊,主持人挑B羊。转换将赢得汽车。
  • 参赛者挑B羊,主持人挑A羊。转换将赢得汽车。

@问题是:关于第一种可能性的表述可以分成两种可能吗?

  • 参赛者挑汽车,主持人挑A羊。转换将失败。
  • 参赛者挑汽车,主持人挑B羊。转换将失败。

在后两种情况,参赛者可以透过转换选择而赢得汽车。第一种情况是唯一一种参赛者透过保持原来选择而赢的情况。因为三种情况中有两种是透过转换选择而赢的,所以透过转换选择而赢的概率是2/3。

如果没有最初选择,或者如果主持人随便打开一扇门(可能主持人会直接开到汽车门,导致游戏结束),又或者如果主持人只会在参赛者作出特定选择某一门时才会问是否转换选择的话,问题都将会变得不一样。例如,如果主持人先从两只山羊中剔除其中一只,然后才叫参赛者作出选择的话,选中的机会将会是1/2。

还可以用逆向思维的方式来理解这个选择。无论参赛者开始的选择如何,在被主持人问到是否更换时都选择更换。如果参赛者先选中山羊,换之后百分之百赢;如果参赛者先选中汽车,换之后百分之百输。而选中山羊的概率是2/3,选中汽车的概率是1/3。所以不管怎样都换,相对最初的赢得汽车仅为1/3的机率来说,转换选择可以增加赢的机会。

一些更简洁的解法:(1)你最初选羊的机率是2/3,而主持人选羊以后,你转换后再选羊的机率就是你最初选车的机率,1/3。 (2)或者反过来看:你最初选车的机率为1/3,主持人选羊以后,你转换后选车的机率就是你最初选羊的机率,2/3。 (3)你最初选车的机率为1/3,车在另外两个门后的机率为2/3,主持人选羊以后,车在最后那张门后的机率还是原来两张门后有车的机率,2/3。

三门问题是多门问题里最难的情况。如果把三门变成千门,参赛者第一次就选中的概率就是1/1000,参赛者就会清楚自己是在猜,而不是如同三门的时候1/3的概率认为自己是对的。这样,当主持人打开剩下999扇门中的998扇时,该如何选择,认真思考就会比三门的时候清晰很多。

Monty tree door1.svg

参见[编辑]

参考资料[编辑]

  • Bapeswara Rao, V. V. and Rao, M. Bhaskara (1992). "A three-door game show and some of its variants". The Mathematical Scientist 17, no. 2, pp. 89–94
  • Bohl, Alan H.; Liberatore, Matthew J.; and Nydick, Robert L. (1995). "A Tale of Two Goats ... and a Car, or The Importance of Assumptions in Problem Solutions". Journal of Recreational Mathematics 1995, pp. 1–9.
  • Gardner, Martin (1959). "Mathematical Games" column, Scientific American, October 1959, pp. 180–182.
  • Mueser, Peter R. and Granberg, Donald (1999), "The Monty Hall Dilemma Revisited: Understanding the Interaction of Problem Definition and Decision Making" (University of Missouri Working Paper 99-06). http://econwpa.wustl.edu:80/eps/exp/papers/9906/9906001.html[失效链接] (retrieved July 5, 2005).
  • Nahin, Paul J. Duelling idiots and other probability puzzlers. Princeton University Press, Princeton, NJ: 2000 (ISBN 0-691-00979-1); pp. 192-193.
  • Selvin, Steve (1975a). "A problem in probability" (letter to the editor). American Statistician 29(1):67 (February 1975).
  • Selvin, Steve (1975b). "On the Monty Hall problem" (letter to the editor). American Statistician 29(3):134 (August 1975).
  • Tierney, John (1991). "Behind Monty Hall's Doors: Puzzle, Debate and Answer?", The New York Times July 21, 1991, Sunday, Section 1; Part 1; Page 1; Column 5
  • vos Savant, Marilyn (1990). "Ask Marilyn" column, Parade Magazine p. 12 (Feb. 17, 1990). [cited in Bohl et al., 1995]
  • Tijms, Henk (2004), Understanding Probability, Chance Rules in Everyday Life , Cambridge University Press, New York, pp. 213-215.

外部链接[编辑]