本頁使用了標題或全文手工轉換

四維速度

維基百科,自由的百科全書
跳至導覽 跳至搜尋
在這篇文章內,向量標量分別用粗體斜體顯示。例如,位置向量通常用 表示;而其大小則用 來表示。

四維速度(英語:Four-velocity)是指物理學中,特別是狹義相對論廣義相對論中,一個物體的四維速度是取代經典意義上的速度(三維矢量)的四維矢量(四維時空中的矢量)。選取四維速度的原因是四維速度在洛倫茲變換下是協變的,而三維速度不是;換句話說,這麼選取可以使光速在任意慣性系下保持不變。

相對論理論中一個事件是在四維時空內的坐標描述的,一個物體在時空中運動產生的軌跡曲線是通過固有時這個參數實現參數化的,而這條曲線稱作世界線。四維速度是一維時間與三維空間坐標對固有時的改變率所構成的矢量,同時也是世界線的切向矢量

作為比較,在經典力學中事件是通過它們在每一時刻上在三維空間中的坐標描述的,它們在三維空間中的軌跡是通過時間這個參數實現參數化的。經典速度是三維空間坐標對時間的改變率所構成的矢量,同時也是軌跡的切向矢量。

在狹義相對論的框架中,四維速度的大小(模)總是和光速的大小相等。

經典力學的情形[編輯]

在經典力學中一個物體在三維空間中的運動路徑由其在三維空間中的坐標函數決定,這些坐標函數都是絕對時間的函數:

其中表示的是在時刻的三個空間位置。

在任意一點,經典速度(沿此點的切線方向)的定義為

因此其分量為

這裡的導數都是在點處定義的,因而它們實際是兩個毗鄰位置間的距離對對應時間間隔的比值。

相對論的情形[編輯]

愛因斯坦相對論中,一個物體對某個特定參考系的運動軌跡是由四維坐標函數(其中表示時間坐標乘以光速c)決定的,每個函數都依賴於固有時

時間膨脹[編輯]

時間膨脹中我們得知

其中洛倫茲因子,定義為

是經典速度矢量的歐幾里德模

.

四維速度的定義[編輯]

一個四維速度是對應世界線的四維切向矢量,四維速度的世界線定義為

其中是原時。

由於光速在任意慣性系下保持不變,無法找到光子靜止的慣性系,因此,對於光子而言,,四維速度不具良好定義。[1]:49

四維速度的分量[編輯]

時間和坐標間的關係為

對固有時求導數,可得四維速度的分量:

至於空間分量方面,即1, 2, 3,根據鏈式法則求導數,可得固有速度w = Ui

這里我們使用到古典力學中的速度定義:

因此四維速度與光速c及古典速度u的關係為

四維速度和加速度[編輯]

四維加速度定義為四維速度對原時的微分:

因為為常數,所以它微分為0:

因此得到以下四維速度和加速度的關係:

注釋[編輯]

在一個靜止參考系中,並且,因而四維速度為,這正是在四維時空中的時間方向上運動的含義。

注意到雖然僅僅在狹義相對論的框架下,四維速度的模總等於光速;但不論是狹義相對論還是廣義相對論,它總具有下面的性質:

這是一個類時或零性的粒子軌跡必須滿足的屬性。

相關條目[編輯]

參考文獻[編輯]

  • Einstein, Albert; translated by Robert W. Lawson. Relativity: The Special and General Theory. New York: Original: Henry Holt, 1920; Reprinted: Prometheus Books, 1995. 1920. 
  • Rindler, Wolfgang. Introduction to Special Relativity (2nd). Oxford: Oxford University Press. 1991. ISBN 0-19-853952-5. 
  1. ^ Bernard Schutz. A First Course in General Relativity. Cambridge University Press. 14 May 2009. ISBN 978-0-521-88705-2.