最大流最小割定理

維基百科,自由的百科全書
跳至導覽 跳至搜尋

最優化理論中,最大流最小割定理提供了對於一個網絡流,從源點到目標點的最大的流量等於最小割的每一條邊的和。即對於一個如果移除其中任何一邊就會斷開源點和目標點的邊的集合的邊的容量的總和。

最大流最小割定理線性規劃中的對偶問題的一種特殊情況,並且可以用來推導門格爾定理König–Egerváry定理[1]

定義[編輯]

G = (V, E)為一個網絡(有向圖),並且有一個起源點 s 和一個超匯點 t,代表 s 是所有流的源頭,t 是所有流的終點。

最大流[編輯]

定義: 一條邊的容量是一個映射c : ER+,記做 cuv 或者 c(u, v),代表着能通過這條邊的最大的流量。

定義: 一個是一個映射f : ER+,記做 fuv 或者 f (u, v)。每一條流有以下兩個限定條件:

  1. 流量限制
  2. 流量守恆

定義: 流的流量的定義是

的源點,代表着從源點流向目標點的流量。


最大流問題:計算的最大值,即從的最大流量。

最小割[編輯]

定義:一個 s-t 割 C = (S, T) 是一種 V 的劃分使得 sS, tTC 割集是集合

因此如果 C 的割集是空集合,則 | f | = 0.

定義: 一個s-t割的容量

其中 如果 並且 , 0 反之。

最小 s-t 割問題: 計算 c(S, T) 的最小值。即找到 S 和 T 使 s-t 割的容量達到它的最小值。

線性規劃公式[編輯]

最大流最小割問題可以被看做為一對線性規劃對偶問題。[2]

最大流問題

最小割問題

變數:

變數:

的最大值

的最小值

滿足

滿足

最大流的線性規劃公式是容易理解的,對於最小割的線性規劃公式的理解如下:

最小化目標是使在割中的邊最小。

下列限制保證了這些變量可以確保一個合法的割。

  • 限制 (即 ) 確保了對兩個非源點或匯點 u,v, 如果uS中 且 vT中, 那麼邊 (u,v)一定會被記在割中 ()。
  • 限制 (即 ) 確保了如果 vT 中, 那麼邊 (s,v) 一定會被記在割中。
  • 限制 (即 ) 確保了 uS 中, 那麼邊 (u,t) 一定會被記在割中。

需要注意的是,這是一個最小化問題,我們不需要確保一條邊不在割里,我們只要保證每條應當在割里的邊被計算了。

注意到在給定的 s-t 割  中,如果 那麼 並且 0 反之。 所以 應該等於 1 並且 應該等於0。由線性規劃中的強對偶定理推得最大流最小割問題中的等式,也就是說如果原問題有一個最優解 x*,則對應問題也有一個最優解 y* ,並且兩個解相等。

舉例[編輯]

一個流量等於s-t 割的容量的流網絡

上圖是一個網絡,上有流量為 7 的流。令 S 集合和 T 集合分別包含所有白色和灰色的點, 從而形成了一個割集包含圖中虛線的 s-t 割,並且其容量為 7,與流量相同。故由大流最小割定理知,前述的流與 s-t 割皆達到流量及容量的極值。

應用[編輯]

廣義最大流最小割定理[編輯]

額外規定映射 為點的容量,記做 c(v),使得一個流 f 不只要滿足邊的流量限制與流量守恆,還要滿足點的流量限制,即

換句話說,流過 v 點的總流量不能超過 v 的容量 c(v)。一個 s-t 割 的定義為一個包含一些點和邊的集合,滿足與任一條由 s 到 t 的路徑皆不互斥。並且 s-t 割的容量 定義成所有點和邊的容量總和。

在此定義之下,廣義最大流最小割定理的敘仍為流量的最大值等於所有 s-t 割的容量最小值。

門格爾定理[編輯]

不共邊路徑問題為給定無向圖 及兩頂點 s、t,求從 s 到 t 彼此沒有共同邊的路徑數量的最大值。

門格爾定理的敘述為從 s 到 t 彼此沒有共同邊的路徑數量的最大值等於在所有 G 的 s-t 割(以原本的定義)中,頂點分別在不同集合的邊數的最小值。

計畫選擇問題[編輯]

計畫選擇問題的網絡型態

計畫選擇問題敘述如下:當下有 n 個計畫 可以被實施、m 種設備 可以被購買,要執行計畫必須擁有該計畫要求的設備,執行計畫 可獲得 的收益,但購買設備 要支付 的費用。如何選擇執行計畫並購買所需設備以獲得淨利的最大值?

設 P 為被執行的計畫的集合,Q 為所購買的設備,則問題變成求最大值

注意到 與 P、Q 的選擇無關,故只需求後兩項和的最小值,即

現在考慮一個網絡,起源點 s 連接到 n 個點 ,邊的容量分別為 ,超匯點 t 連接到 m 個點 ,邊的容量分別為 ,若執行任務 需購買設備 ,則在 之間連上一條容量為無限大的邊,若不需購買設備,則不連上邊。則 對應到一個 s-t 割的容量,其中的兩個集合是要執行的計畫與要購買的設備和它的餘集,也就是

在此,。於是,原問題轉成求該圖的最大流問題,並且可以藉由各種算法求得其極值。

以下給出一個計畫選擇問題的例子,右圖是該問題對應到的網絡。

計畫收入 r(pi)

設備價格 c(qj)

備註
1 100 200

執行計畫 p1 須購買設備 q1q2

2 200 100

執行計畫 p2 須購買設備 q2

3 150 50

執行計畫 p3 須購買設備 q3

該網絡的最小 s-t 割是選擇計畫 p2p3 與設備 q2q3,容量為 250。三個計劃的總收益是 450,因此最大淨利為 450 − 250 = 200。

以上解法可以理解為將計畫所給予的收益流過所需設備,如果無法流滿設備至 t 的邊,代表執行計畫不合成本,最小割將選擇穿過 s 到計畫的邊而非穿過設備到 t 的邊。

影像分割問題[編輯]

Each black node denotes a pixel.

設原圖有 n 像素,想要把該圖分割為前景和背景,並且將 i 像素歸類為前景有效益  fi,歸類為背景有效益  bi,但是若 i、j 像素相鄰且被歸類為不同塊,則會減少 pij 的效益。求將該圖分割為前後景的最有效益方法。

令 P 為前景的集合,Q 為背景的集合,於是問題轉化成求最大值

因為  fi bi 的總合是與 P、Q的選取無關,因此等價於求以下最小值

以上的最小值問題可以被描述為一個網絡的最小割問題,其中該網絡如右圖,以橘點為起源點;紫點為超匯點。各個像素被描述為網絡的頂點,起源點至第 i 個像素連上一條容量為  fi有向邊;第 i 個像素至超匯點連上一條容量為 bi有向邊。相鄰的像素 i、j 之間連上來回兩條容量為 pij 的有像邊。則一個 s-t 割代表一種將部分像素歸類為前景 P、其餘歸類為背景 Q 的安排。

歷史[編輯]

最大流最小割問題最早在1956年被P. Elias, A. Feinstein,和 C.E. Shannon 證明[3], 並且L.R. Ford, Jr. 和 D.R. Fulkerson 也在同年證明了該定理[3]

證明[編輯]

同之前的設定,G = (V, E) 是一個網絡(有向圖) ,s 點和 t 點分別為 G 的起源點和超匯點。

將所有流考慮成一個歐式空間有界子集,滿足流量限制與流量守恆,而流量是一個連續函數,因此有極大值 |f| 。

設 f 達到最大流,令 (Gf ) 是 f 的殘留網絡,定義

  1. A:在 (Gf ) 中可以從 s 出發到達的點
  2. Ac:A 以外的點,即 V − A

換句話說,v∈A 若且唯若 s 可以流出更多流量到 v。

我們宣稱 ,其中該 s-t 割的容量定義為

.

由於 的大小等於所有流出集合 A 的流量總和減所有流入集合 A 的流量總和,故 ,並且等號成立若且唯若

  • 所有從 A 流向 Ac 的邊流量均已達飽和。
  • 所有從 Ac 流向 A 的邊流量均為 0。

我們用反證法分別證明以上兩點:

  • 假設存在從 A 流向 Ac 的邊 並未達到飽和,即 。因此,可以從 x 流更的流量到 y,(x,y) 是 Gf 的一條邊。由 x∈A 知 Gf 圖中有一條中的路徑從 s 到 x,其中只經過 A 中的點, 所以 y∈A,產生矛盾。是故所有從 A 流向 Ac 的邊流量均已達飽和。
  • 假設存在從 Ac 流向 A 的邊 其流量不為 0,即 。因此,可以從 y 流更的流量到 x,(x,y) 是 Gf 的一條邊。由 x∈A 知 Gf 圖中有一條中的路徑從 s 到 x,其中只經過 A 中的點, 所以 y∈A,產生矛盾。是故所有從 Ac 流向 A 的邊流量均為 0。

於是,聲稱得證。

由於流量恆不超過容量,|f| 是容量的下界,所以 是容量的最小值,由聲稱知,最大流最小割定理得證。

參見[編輯]

參考文獻[編輯]

  1. ^ Dantzig, G.B.; Fulkerson, D.R. On the max-flow min-cut theorem of networks (PDF). RAND corporation. 9 September 1964: 13 [10 January 2018]. 
  2. ^ Trevisan, Luca. Lecture 15 from CS261: Optimization (PDF). 
  3. ^ 3.0 3.1 P. Elias, A. Feinstein, and C. E. Shannon, A note on the maximum flow through a network, IRE. Transactions on Information Theory, 2, 4 (1956), 117–119