維基百科,自由的百科全書
跳到: 導覽搜尋
鋇   56Ba
氫(其他非金屬)
氦(惰性氣體)
鋰(鹼金屬)
鈹(鹼土金屬)
硼(類金屬)
碳(其他非金屬)
氮(其他非金屬)
氧(其他非金屬)
氟(鹵素)
氖(惰性氣體)
鈉(鹼金屬)
鎂(鹼土金屬)
鋁(貧金屬)
矽(類金屬)
磷(其他非金屬)
硫(其他非金屬)
氯(鹵素)
氬(惰性氣體)
鉀(鹼金屬)
鈣(鹼土金屬)
鈧(過渡金屬)
鈦(過渡金屬)
釩(過渡金屬)
鉻(過渡金屬)
錳(過渡金屬)
鐵(過渡金屬)
鈷(過渡金屬)
鎳(過渡金屬)
銅(過渡金屬)
鋅(過渡金屬)
鎵(貧金屬)
鍺(類金屬)
砷(類金屬)
硒(其他非金屬)
溴(鹵素)
氪(惰性氣體)
銣(鹼金屬)
鍶(鹼土金屬)
釔(過渡金屬)
鋯(過渡金屬)
鈮(過渡金屬)
鉬(過渡金屬)
鍀(過渡金屬)
釕(過渡金屬)
銠(過渡金屬)
鈀(過渡金屬)
銀(過渡金屬)
鎘(過渡金屬)
銦(貧金屬)
錫(貧金屬)
銻(類金屬)
碲(類金屬)
碘(鹵素)
氙(惰性氣體)
銫(鹼金屬)
鋇(鹼土金屬)
鑭(鑭系元素)
鈰(鑭系元素)
鐠(鑭系元素)
釹(鑭系元素)
鉕(鑭系元素)
釤(鑭系元素)
銪(鑭系元素)
釓(鑭系元素)
鋱(鑭系元素)
鏑(鑭系元素)
鈥(鑭系元素)
鉺(鑭系元素)
銩(鑭系元素)
鐿(鑭系元素)
鑥(鑭系元素)
鉿(過渡金屬)
鉭(過渡金屬)
鎢(過渡金屬)
錸(過渡金屬)
鋨(過渡金屬)
銥(過渡金屬)
鉑(過渡金屬)
金(過渡金屬)
汞(過渡金屬)
鉈(貧金屬)
鉛(貧金屬)
鉍(貧金屬)
釙(貧金屬)
砹(類金屬)
氡(惰性氣體)
鈁(鹼金屬)
鐳(鹼土金屬)
錒(錒系元素)
釷(錒系元素)
鏷(錒系元素)
鈾(錒系元素)
鎿(錒系元素)
鈈(錒系元素)
鎇(錒系元素)
鋦(錒系元素)
錇(錒系元素)
鐦(錒系元素)
鎄(錒系元素)
鐨(錒系元素)
鍆(錒系元素)
鐒(錒系元素)
鍩(錒系元素)
鑪(過渡金屬)
𨧀(過渡金屬)
𨭎(過渡金屬)
𨨏(過渡金屬)
𨭆(過渡金屬)
䥑(未知特性)
鐽(未知特性)
錀(未知特性)
鎶(過渡金屬)
鉨(未知特性)
鈇(貧金屬)
鏌(未知特性)
鉝(未知特性)
Ts(未知特性)
Og(未知特性)




外觀
金屬:銀白色
概況
名稱·符號·序數 鋇(Barium)·Ba·56
元素類別 鹼土金屬
·週期· 2·6·s
標準原子質量 137.327
電子排布

[] 6s2
2,8,18,18,8,2

鋇的電子層(2,8,18,18,8,2)
歷史
發現 卡爾·威廉·舍勒(1772年)
分離 漢弗里·戴維(1808年)
物理性質
物態 固態
密度 (接近室溫
3.51 g·cm−3
熔點時液體密度 3.338 g·cm−3
熔點 1000 K,727 °C,1341 °F
沸點 2170 K,1897 °C,3447 °F
熔化熱 7.12 kJ·mol−1
汽化熱 140.3 kJ·mol−1
比熱容 28.07 J·mol−1·K−1

蒸汽壓

壓/Pa 1 10 100 1 k 10 k 100 k
溫/K 911 1038 1185 1388 1686 2170
原子性質
氧化態 +2
(強鹼性)
電負性 0.89(鮑林標度)
電離能

第一:502.9 kJ·mol−1
第二:965.2 kJ·mol−1

第三:3600 kJ·mol−1
原子半徑 222 pm
共價半徑 215±11 pm
范德華半徑 268 pm
雜項
晶體結構 體心立方
磁序 順磁性
電阻率 (20 °C)332 n Ω·m
熱導率 18.4 W·m−1·K−1
膨脹系數 (25 °C)20.6 µm·m−1·K−1
楊氏模量 13 GPa
剪切模量 4.9 GPa
莫氏硬度 1.25
CAS號 7440-39-3
最穩定同位素

主條目:鋇的同位素

同位素 豐度 半衰期 方式 能量MeV 產物
130Ba 0.106% (0.5-2.7)x1021 εε 2.620 130Xe
132Ba 0.101% >3x1020 β+β+ 0.846 132Xe
133Ba 人造 10.51 年 ε 0.517 133Cs
134Ba 2.417% 穩定,帶78個中子
135Ba 6.592% 穩定,帶79個中子
136Ba 7.854% 穩定,帶80個中子
137Ba 11.23% 穩定,帶81個中子
138Ba 71.7% 穩定,帶82個中子

Barium)是化學元素週期表中的元素,它的原子序數是56,化學符號是Ba。它是周期表中2A族的第五個元素,是一種柔軟的有銀白色金屬光澤的鹼土金屬。由於它的化學性質十分活潑,從來沒有在自然界中發現鋇單質。

鋇在自然界中最常見的礦物是重晶石(硫酸鋇,BaSO4)和毒重石(碳酸鋇,BaCO3),二者皆不容於水。鋇的名稱源於希臘文單詞βαρύς(barys),意為「重的」。它在1774年被確認為一個新元素,但直到1808年電解法發明不久後才被歸納為金屬元素。

鋇在工業上只有少量應用。過去曾用它作為真空管中的吸氣劑。它是YBCO(一種高溫超導體)和電瓷的成分之一,也可以被添加進鋼中來減少金屬構成中碳顆粒的數量。鋇的化合物用於製造煙火中的綠色。硫酸鋇作為一種不溶的重添加劑被加進鑽井液中,而在醫學上則作為一種X光造影劑。可溶性鋇鹽因為會電離出鋇離子所以有毒,因此也被用做老鼠藥。

特徵[編輯]

物理性質[編輯]

氧化的鋇

鋇是一種軟的銀白色金屬,在極純時稍帶有金色。[1]:2 鋇金屬的銀白色會因在空氣中氧化而快速消失,產生一層暗灰色的氧化層。鋇有中等的單位重和良好的導電性。極純的鋇非常難以製備,所以鋇的很多特性還未能準確的測量。[1]:2

在室溫與常壓下,鋇呈立方晶系,鋇原子間的距離為503皮米,並在每秒1.8×10-5 °C的加熱速度下膨脹。[1]:2 它是一種非常軟的金屬,其摩氏硬度為1.25。[1]:2 它的熔點為1,000 K(730 °C)[2]:4–43,介於鍶的1,050 K(780 °C)[2]:4–86與鐳的973 K(700 °C)[2]:4–78之間。但是它的沸點2,170 K(1,900 °C)超過了鍶的熔點1,655 K(1,382 °C)[2]:4–86。 它的密度(3.62 g·cm−3[2]:4–43仍然在鍶的(2.36 g·cm−3[2]:4–86和鐳的(~5 g·cm−3)之間。[2]:4–78

化學性質[編輯]

鋇的化學性質與相似。在大多數情況下,鋇的氧化態為+2。由於鋇單質可與氧族元素發生反應放出大量熱量,為了防止與空氣中的氧氣發生反應,鋇單質一般儲存於油或惰性氣體中。[1]:2鋇單質在加熱時亦可與其它非金屬單質發生放熱反應。[1]:2-3

鋇也可以與發生反應放出氫氣

Ba + 2 ROH → Ba(OR)2 + H2↑ (R代表烷基或氫原子)[1]:3

鋇可以與發生反應形成配合物,如Ba(NH3)6[1]:3

鋇易與酸發生反應生成鹽。然而鋇遇硫酸時會反應生成不溶於水的硫酸鋇,從而使反應停止。[3]

鋇可以與等金屬形成金屬互化物合金[4]

化合物[編輯]

鋇離子沒有特別的顏色,因此鋇鹽通常顯白色,其溶液為無色。[5]鋇鹽的密度通常比同類的鈣鹽和鍶鹽更大,參見下表。(表中鋅鹽供對比參考)

部分鹼土金屬鹽和鋅鹽的密度對比(單位:g·cm−3
O2− S2− F Cl SO2−
4
CO2−
3
O2−
2
H
Ca2+ [2]:4–48–50 3.34 2.59 3.18 2.15 2.96 2.83 2.9 1.7
Sr2+ [2]:4–86–88 5.1 3.7 4.24 3.05 3.96 3.5 4.78 3.26
Ba2+ [2]:4–43–45 5.72 4.3 4.89 3.89 4.49 4.29 4.96 4.16
Zn2+ [2]:4–95–96 5.6 4.09 4.95 2.09 3.54 4.4 1.57

鍊金術士最早通過加熱碳酸鋇得到氫氧化鋇。與氫氧化鈣不同,氫氧化鋇溶液不易吸收二氧化碳,因此常用於校準pH檢測設備。

同位素[編輯]

在地殼中可以找到7種鋇的同位素,分別是鋇-130、132、134至138。[6]其同位素質量越小,豐度越低。在所有穩定同位素中,含量最多的是鋇-138,佔71.7%。[6]

歷史[編輯]

中世紀初,鍊金術士即對一些鋇礦石有所了解。在意大利博洛尼亞發現的一些被稱為「博洛尼亞石」的平滑卵石狀重晶石塊曾得到鍊金術士的注意,因為這些礦石在受到光照後會發光數年。1602年,卡西奧勞羅(V. Casciorolus)描述了這種用有機物加熱重晶石發出磷光的性質。[1]:5

重晶石

1774年,卡爾·威廉·舍勒發現重晶石中含有一種未發現的新元素,但無法分離提純這種元素,只能得到它的氧化物,即氧化鋇。兩年後,約翰·戈特利布·甘恩也在相同的研究中得到了氧化鋇。氧化鋇最早被Guyton de Morveau英語Louis-Bernard Guyton de Morveau稱作「barote」,後來被拉瓦錫改作「baryta」。同在18世紀,英國礦物學家威廉·威靈寧英語William Withering坎伯蘭的鉛礦中注意到一種沉重的礦物,現在稱為毒重石,其主要成分為碳酸鋇。1808年,漢弗里·戴維首次通過電解熔融的鋇鹽分離鋇單質。[7]戴維通過與類似的命名方法,用重晶石(baryta)的名稱加上表示元素的後綴-ium來命名鋇(barium)。[8]羅伯特·本生奧古斯都·馬修森英語Augustus Matthiessen通過電解氯化鋇氯化銨的熔融混合物來獲得純鋇。[9][10]

在20世紀初的液化空氣電解分餾技術出現之前,從1880年代開始,純氧一般通過過氧化鋇的分解來生產。此方法的原理是,將氧化鋇在空氣中加熱到500~600 °C(932~1,112 °F)生成過氧化鋇,然後將過氧化鋇加熱到700 °C(1,292 °F)以上分解釋放氧氣:[11][12]

2 BaO + O2 ⇌ 2 BaO2

從1908年開始,硫酸鋇被用作X光檢測消化系統時使用的造影劑[13]

生產[編輯]

鋇在地殼中的含量為0.0425%,海水中為13μg/ L。鋇的生產主要依靠世界各地的硫酸鋇礦物重晶石。鋇也可以通過碳酸鋇礦物毒重石來生產,此類礦物主要儲藏於英國羅馬尼亞前蘇聯[1]:5

重晶石的估計儲量在0.7至20億噸之間。重晶石的年產量最大為1981年的830萬噸。自1990年代下半葉開始,重晶石生產從1996年的560萬噸增加到2005年的7.6%,在2011年達到7.8%。中國占重晶石產量的50%以上,其次是印度(2011年為14%)、摩洛哥(8.3%)、美國(8.2%)、土耳其(2.5%)、伊朗哈薩克斯坦(各佔2.6%)。[14]

開採出的礦石需要經過洗滌、粉碎、分類,並與石英分離。如果石英滲入礦石過深,或者礦石中鐵、鋅、鉛含量過高,則須使用泡沫浮選法英語Froth flotation處理。最終得到的產物是質量分數98%的重晶石,純度不低於95%,且鐵和二氧化矽含量極少。[1]:7隨後使用碳還原硫酸鋇:

BaSO4 + 2 C → BaS + 2 CO2

生成了水溶性的硫化鋇之後,便可以作為其它產品的原料:與氧反應得到硫酸鋇,與硝酸生成硝酸鋇,與二氧化碳生成碳酸鋇等。硝酸鋇加熱分解可以產生鋇的氧化物。金屬鋇可以用氧化鋇在1,100 °C(2,010 °F)下與反應得到。其中首先生成金屬互化物BaAl4

3 BaO + 14 Al → 3 BaAl4 + Al2O3

BaAl4是與氧化鋇反應生成金屬的中間產物。注意並非全部鋇元素都被還原。

8 BaO + BaAl4 → Ba↑ + 7 BaAl2O4

剩餘的氧化鋇與生成的氧化鋁反應:

BaO + Al2O3 → BaAl2O4

總反應為:[1]:3

4 BaO + 2 Al → 3 Ba↑ + BaAl2O4

鋇蒸氣在氬氣氣氛中冷凝並裝入模具中。這種方法在商業上用於生產超純鋇。通常市面上出售的鋇純度約99%,主要雜質為鍶和鈣(含量達到0.8%和0.25%),而其他雜質成分小於0.1%。

硫酸鋇與矽在1,200 °C(2,190 °F)下亦可發生類似的反應得到鋇和偏矽酸鋇。但工業上一般不會使用電解法,因為鋇易溶於熔融的鹵化物,並且產物純度較低。[1]:3

寶石[編輯]

藍錐礦為鋇礦物,是一種非常罕見的藍色熒光寶石,被其發現地加利福尼亞州定為州石。

應用[編輯]

金屬單質及其合金[編輯]

鋇單質或鋇合金可用於吸收真空管(如電視顯像管)中的多餘氣體。鋇因其氧氣,氮氣,二氧化碳和水的蒸氣壓和反應度較低而適用於此目的。它甚至可以通過溶解於在晶格中來部分去除惰性氣體。隨着液晶顯示器等離子顯示器的日益普及,這種應用現在已較少見。[1]:4

鋇單質的其他用途較少見。其中包括:[1]:4

  • 添加於矽鋁合金中以優化其結構;
  • 用作軸承合金;
  • 添加到鉛錫焊料合金中增加抗蠕變性;
  • 添加於用於火花塞的鎳合金;
  • 添加到鋼和鑄鐵中作為孕育劑;
  • 與鈣、錳、矽和鋁組成合金,用作高級鋼去氧劑。

硫酸鋇和重晶石[編輯]

其它鋇化合物[編輯]

引用[編輯]

  1. ^ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 Kresse, Robert; Baudis, Ulrich; Jäger, Paul; Riechers, H. Hermann; Wagner, Heinz; Winkler, Jocher; Wolf, Hans Uwe. Barium and Barium Compounds. (編) Ullman, Franz. Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. 2007. doi:10.1002/14356007.a03_325.pub2. 
  2. ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 Lide, D. R. CRC Handbook of Chemistry and Physics 84th. Boca Raton (FL): CRC Press. 2004. ISBN 978-0-8493-0484-2. 
  3. ^ Müller, Hermann. Sulfuric Acid and Sulfur Trioxide. (編) Ullman, Franz. Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. 2007. doi:10.1002/14356007.a03_325.pub2. 
  4. ^ Ferro, Riccardo & Saccone, Adriana. Intermetallic Chemistry. Elsevier. 2008: 355. ISBN 978-0-08-044099-6. 
  5. ^ Slowinski, Emil J.; Masterton, William L. Qualitative analysis and the properties of ions in aqueous solution 2nd. Saunders. 1990: 87. ISBN 978-0-03-031234-2. 
  6. ^ 6.0 6.1 De Laeter, J. R.; Böhlke, J. K.; De Bièvre, P.; Hidaka, H.; Peiser, H. S.; Rosman, K. J. R.; Taylor, P. D. P. Atomic weights of the elements. Review 2000 (IUPAC Technical Report). Pure and Applied Chemistry. 2003, 75 (6): 683–800. doi:10.1351/pac200375060683. 
  7. ^ Davy, H. (1808) "Electro-chemical researches on the decomposition of the earths; with observations on the metals obtained from the alkaline earths, and on the amalgam procured from ammonia," Philosophical Transactions of the Royal Society of London, vol. 98, pp. 333–370.
  8. ^ Krebs, Robert E. The history and use of our earth's chemical elements: a reference guide. Greenwood Publishing Group. 2006: 80. ISBN 0-313-33438-2. 
  9. ^ Masthead. Annalen der Chemie und Pharmacie. 1855, 93 (3): fmi–fmi. doi:10.1002/jlac.18550930301. 
  10. ^ Wagner, Rud; Neubauer, C.; Deville, H. Sainte-Claire; Sorel; Wagenmann, L.; Techniker; Girard, Aimé. Notizen. Journal für Praktische Chemie. 1856, 67: 490–508. doi:10.1002/prac.18560670194. 
  11. ^ Jensen, William B. The Origin of the Brin Process for the Manufacture of Oxygen. Journal of Chemical Education. 2009, 86 (11): 1266. Bibcode:2009JChEd..86.1266J. doi:10.1021/ed086p1266. 
  12. ^ Ihde, Aaron John. The development of modern chemistry. 1984-04-01: 681. ISBN 978-0-486-64235-2. 
  13. ^ Schott, G. D. Some Observations on the History of the Use of Barium Salts in Medicine. Med. Hist. 1974, 18 (1): 9–21. PMC 1081520. PMID 4618587. doi:10.1017/S0025727300019190. 
  14. ^ Miller, M. M. Barite. USGS.gov