K-562

维基百科,自由的百科全书

K-562人类永生化骨髓性白血病细胞系,处于高度未分化状态,并且属于红白血病(erythroleukemia)细胞系,具有恶性程度高、增殖速度快,以及可被一系列体外诱导剂诱导分化的特点[1]。最初分离自一名处于急性期的53岁女性慢性骨髓性白血病(CML)患者的胸水[2][3]

特征[编辑]

K-562细胞不粘连且圆形,对bcr:abl融合基因呈阳性反应,并且与未进行细胞分化粒细胞[4]红细胞[5]蛋白质组相似。在细胞培养的过程中,它们的结块比许多其他悬浮细胞系要少得多,原因可能是由于细胞表面粘附分子引起的bcr:abl融合基因下调[6]。然而有研究表明,过度表达bcr:abl融合基因可能会增加细胞对细胞培养皿的粘附力[7]

K-562细胞可以自发形成类似于早期红细胞粒细胞单核细胞的特征[8],并且由于缺乏抑制自然杀伤细胞活性所需的主要组织相容性复合体[3],因此很容易被自然杀伤细胞杀死[9] 。它们也没有任何痕量的爱泼斯坦-巴尔病毒和其他疱疹病毒。除了费城染色体外,它们在15号染色体的长臂与17号染色体之间表现出第二种的相互易位[2]。 K-562细胞有两个子系可以表示MHC1类分子A2[10]和A3[11]

细胞周期与调控[编辑]

在生长、细胞分化和凋亡方面,许多因素和成分在K-562细胞的细胞周期中发挥作用[12]。这些白血病细胞的生长受到细胞分化或凋亡的控制[13]。这些未分化的祖细胞中的脱乙酰基酶活性可以诱导细胞分化,从而改变K-562细胞的表型和形态[12]。这些变化还可以使白血病细胞进入应激状态,从而提高细胞对引发凋亡的药物的敏感性[12]。此外,表型的变化会降低生长速率,并且导致K562细胞具有能够向红细胞系、粒细胞系、单核细胞-巨噬细胞系统和巨核细胞系统分化的潜能,表现出相应的细胞表型[14][15],能够在低氧环境下被诱导分化形成红细胞和巨核细胞,故而是用于研究红系诱导分化的理想细胞模型,目前已经成为研究细胞分化的主要细胞模型[16][17]

K-562细胞及许多癌细胞均存在着Aurora激酶英语Aurora kinase过多的问题[18]。Aurora激酶在纺锤体形成、染色体分离及胞质分裂中都发挥作用[18] ,而这些功能在细胞中是必需的,以便分裂和再生组织,并且起维持稳态的作用。然而过度表达Aurora激酶会导致细胞分裂时不受控制,从而导致癌症[18] 。因此,抑制Aurora激酶是癌症的重要调控机制,因为它可以防止细胞进行有丝分裂[18]

细胞凋亡是调节K-562细胞的重要机制,并且可通过细胞代谢状态的变化来诱导[12]。细胞凋亡过程中涉及许多不同的细胞成分,例如BCR/ABL、Bcl-2英语Bcl-2Bax英语Bcl-2-associated X protein蛋白和细胞色素c[13],而p53蛋白在K-562细胞的细胞周期调控中也十分重要[19],因为它靶向细胞周期蛋白依赖性激酶抑制剂p21,引起细胞分化、细胞周期停滞在G1期,最终导致细胞凋亡[19]。当这些成分的水平降低时,它们将不能抑制癌细胞的凋亡,或者会导致细胞凋亡被诱导[13] 。这些成分是线粒体中的关键因素,因此有证据支持细胞凋亡会使用到线粒体凋亡途径[13]。除此之外,当这些细胞成分偏离平衡点时,就会令细胞的形态出现变化,导致K-562细胞停滞在G2/M期[13],从而导致核碎裂、染色质浓缩和其他形态学变化,最终导致细胞程序性死亡[13]

目前已知伊马替尼可以抑制BCR/ ABL,导致细胞停止生长并开始凋亡[20]。K-562细胞的另一个重要调节器是Sirtuin英语Sirtuin[12],通过与细胞中的脱乙酰酶活性相互作用而在细胞应激、代谢和自噬中发挥作用[12]。其他调节K-562细胞的方法包括重楼皂苷 D(polyphyllin D),它会令细胞从祖细胞状态中进行分化并开始凋亡[13]

参考资料[编辑]

  1. ^ Fader, CM; Salassa, BN; Grosso, RA; Vergara, AN; Colombo, MI. Hemin induces mitophagy in a leukemic erythroblast cell line.. Biology of the cell. 2016-04, 108 (4): 77–95 [2020-02-13]. PMID 26773440. doi:10.1111/boc.201500058. (原始内容存档于2020-02-14). 
  2. ^ 2.0 2.1 Lozzio, C.B.; Lozzio, B.B., Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome, Blood, 1975, 45 (3): 321–34, PMID 163658 
  3. ^ 3.0 3.1 Drexler, H.G., The Leukemia-Lymphoma Cell Line Factsbook, San Diego: Academic Press, 2000 
  4. ^ Klein, E.; Ben-Bassat, H.; Neumann, H.; Ralph, P.; Zeuthen, J.; Polliack, A.; Vánky, F., Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia, International Journal of Cancer, 1976, 18 (4): 421–31, PMID 789258, doi:10.1002/ijc.2910180405 
  5. ^ Andersson, L.C.; Nilsson, K.; Gahmberg, C.G., K562 - A human erythroleukemic cell line, International Journal of Cancer, 1979, 23 (2): 143–7, PMID 367973, doi:10.1002/ijc.2910230202 
  6. ^ Jongen-Lavrencic, M. BCR/ABL-mediated downregulation of genes implicated in cell adhesion and motility leads to impaired migration toward CCR7 ligands CCL19 and CCL21 in primary BCR/ABL-positive cells. Leukemia. 2005, 19 (3): 373–380. PMID 15674360. doi:10.1038/sj.leu.2403626. 
  7. ^ Karimiani, EG; Marriage, F; Merritt, AJ; Burthem, J; Byers, RJ; Day, PJ. Single-cell analysis of K562 cells: an imatinib-resistant subpopulation is adherent and has upregulated expression of BCR-ABL mRNA and protein.. Experimental Hematology. Mar 2014, 42 (3): 183–191.e5. PMID 24269846. doi:10.1016/j.exphem.2013.11.006. 
  8. ^ Lozzio, B.B.; Lozzio, C.B.; Bamberger, E.G.; Feliu, A.S., A multipotential leukemia cell line (K-562) of human origin, Proceedings of the Society for Experimental Biology and Medicine, 1981, 166 (4): 546–50, PMID 7194480, doi:10.3181/00379727-166-41106 
  9. ^ Lozzio, B.B.; Lozzio, C.B., Properties and usefulness of the original K-562 human myelogenous leukemia cell line, Leukemia Research, 1979, 3 (6): 363–70, PMID 95026, doi:10.1016/0145-2126(79)90033-X 
  10. ^ Britten, C.M.; Meyer, R.G.; Kreer, T.; Drexler, I.; Wölfel, T.; Herr, W., The use of HLA-A*0201-transfected K562 as standard antigen-presenting cells for CD8(+) T lymphocytes in IFN-gamma ELISPOT assays, Journal of Immunological Methods, 2002, 259 (1–2): 95–110, PMID 11730845, doi:10.1016/S0022-1759(01)00499-9 
  11. ^ Clark, R.E.; Dodi, I.A.; Hill, S.C.; Lill, J.R.; Aubert, G.; Macintyre, A.R.; Rojas, J.; Bourdon, A.; et al, Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the BCR-ABL b3a2 fusion protein (PDF), Blood, 2001, 98 (10): 2887–93 [2020-02-14], PMID 11698267, doi:10.1182/blood.V98.10.2887, (原始内容存档 (PDF)于2018-07-24) 
  12. ^ 12.0 12.1 12.2 12.3 12.4 12.5 Duncan, Mark; DeLuca, Teresa; Kuo, Hsin-Yu; Yi, Minchang; Mrksich, Milan; Miller, William. SIRT1 is a critical regulator of K562 cell growth, survival, and differentiation. Experimental Cell Research. 2016, 344 (1): 40–52. PMC 4879089可免费查阅. PMID 27086164. doi:10.1016/j.yexcr.2016.04.010. 
  13. ^ 13.0 13.1 13.2 13.3 13.4 13.5 13.6 Yang, Chunhui; Cai, Hong; Meng, Xiuxiang. Polyphyllin D induces apoptosis and differentiation in K562 human leukemia cells. Internal Immunopharmacology. 2016, 36: 17–22. PMID 27104314. doi:10.1016/j.intimp.2016.04.011. 
  14. ^ Landi, M; Catelani, G; D'Andrea, F; Ghidini, E; Amari, G; Paola, P; Bianchi, N; Gambari, R. Synthesis of glycose carbamides and evaluation of the induction of erythroid differentiation of human erythroleukemic K562 cells.. European journal of medicinal chemistry. 2009-02, 44 (2): 745–54 [2020-02-13]. PMID 18571290. doi:10.1016/j.ejmech.2008.05.001. (原始内容存档于2020-02-14). 
  15. ^ Shimokawa, T; Nunomura, S; Fujisawa, D; Ra, C. Identification of the C/EBPα C-terminal tail residues involved in the protein interaction with GABP and their potency in myeloid differentiation of K562 cells.. Biochimica et biophysica acta. 2013-11, 1829 (11): 1207–17 [2020-02-13]. PMID 24076158. doi:10.1016/j.bbagrm.2013.09.004. (原始内容存档于2020-02-14). 
  16. ^ Fibach, E; Bianchi, N; Borgatti, M; Prus, E; Gambari, R. Mithramycin induces fetal hemoglobin production in normal and thalassemic human erythroid precursor cells.. Blood. 2003-08-15, 102 (4): 1276–81 [2020-02-13]. PMID 12738678. doi:10.1182/blood-2002-10-3096. (原始内容存档于2020-02-14). 
  17. ^ Zuccato, C; Bianchi, N; Borgatti, M; Lampronti, I; Massei, F; Favre, C; Gambari, R. Everolimus is a potent inducer of erythroid differentiation and gamma-globin gene expression in human erythroid cells.. Acta haematologica. 2007, 117 (3): 168–76 [2020-02-13]. PMID 17148936. doi:10.1159/000097465. (原始内容存档于2020-02-14). 
  18. ^ 18.0 18.1 18.2 18.3 Fan, Yanhua; Lu, Hongyuan; An, Li; Wang, Changli; Zhou, Zhipeng; Feng, Fan; Ma, Hongda; Xu, Yongnan; Zhao, Qingchun. Effect of active faction of Eriocaulon sieboldianum on human leukemia K563 cells via proliferation inhibition, cell cycle arrest and apoptosis induction. Environmental Toxicology and Pharmacology. 2016, 43: 13–20. PMID 26923230. doi:10.1016/j.etap.2015.11.001. 
  19. ^ 19.0 19.1 Chylicki, K; Ehinger, M; Svedberg, H; Bergh, G; Olsson, I; Gullberg, U. p53 mediated differentiation of the erythroleukemia cell line K562. Cell Growth & Differentiation. 2000, 11 (6): 315–324. PMID 10910098. 
  20. ^ Wang, Jian; Li, Qinghua; Wang, Chijuan; Xiong, Q; Lin, Y; Sun, Q; Jin, H; Yang, F; Ren, X; Pang, T. Knock-down of CIAPIN1 sensitizes K562 chronic myeloid leukemia cells to Imatinib by regulation of cell cycle and apoptosis-associated members via NF-KB and ERK5 signaling pathway. Biochemical Pharmacology. 2016, 99: 132–145. PMID 26679828. doi:10.1016/j.bcp.2015.12.002. 

外部链接[编辑]