本页使用了标题或全文手工转换

反氢

维基百科,自由的百科全书
跳到导航 跳到搜索
一颗反氢原子由一个正子和一个反质子组成

反氢antihydrogen)是对应元素反物质:每颗氢原子是由一颗质子电子组成,而反氢则是由一颗反质子正电子组成。其化学符号多以“H”表示,即“H”上加一横条,读作“H-bar”,原子序是-1。

历史[编辑]

1932年,此前一直研究宇宙射线的卡尔·戴维·安德森了发现带正电荷的电子:正电子

1955年埃米利奥·塞格雷欧文·张伯伦通过使用粒子加速器“Bevatron英语Bevatron”发现了反质子,即反氢的原子核。在此实验中还发现了反中子

1995年欧洲核子研究组织(CERN)和德国的研究小组发现在反质子周围与正电子反应,产生反氢圈,次年一月公布结果。

根据粒子物理学CPT定律,反氢的不少特性均与氢相同,包括质量磁矩及在量子状态中的过渡频率(即把镭射微波光束射在反氢原子上,会发出与氢相同颜色的光,例如:1s-2s的过渡频率同样为243 nm[1])。由于反物质的质量不会呈负数,因此在万有引力方面,反氢也应与正氢相同。

当反氢原子与正物质接触,它们会很快湮灭并化为伽马射线及高能量π介子,这些π介子又很快会衰变为μ子中微子、正子及电子,并很快会消失。如果反氢原子处于真空环境,又不与正物质碰撞,它们理应永远存在,不会湮灭消失。

自然界的环境不会出现反氢,因此需靠人们以粒子加速器来制造。1995年,欧洲核子研究组织(CERN)成功在瑞士日内瓦的研究所中,以射击反质子来制造反氢原子,而这些反质子是在粒子加速器中的原子团中产生的。当一粒反质子接近氙原子核时,会产生正负电子各一粒,正电子给反质子抓获时,便会产生反氢原子。由于每粒反质子能变为反氢原子的机会率约为10-19,因此以这个方法去大量生产反氢原子,成本定会极为昂贵。

近年,ATRAP及ATHENA两个计划正于CERN共同进行研究,他们把从放射性金属中产生的正电子与困在彭宁离子阱中的反质子融合为反氢原子,每秒钟可生产100颗,这个方法于2002年首度试验,至2004年共生产了数十万颗。

这些反氢原子由于温度极高,约为摄氏数千度,因此撞向实验器皿时湮灭的机会也极高。而下一个目标是要制造低温的反氢,并处于接近绝对零度的水平,使之可由磁场来密封。然后可以镭射来准确量度其过渡频率,如果其结果与正氢不同,纵使其差距小,也能证明它们的特性不完全相同,并能帮助解释为何宇宙的物质以正物质为主,而非反物质。

2016年12月19日,《自然》杂志登出CERN反氢镭射物理仪器Antihydrogen Laser Physics Apparatus︔缩写作ALPHA)反质子减速器测得反氢中最低的两个能级(1S与2S)之间的电子跃迁英语atomic electron transition,其结果在实验误差内与一般的氢原子一致,吻合物质-反物质对称性的CPT对称性定律概念[1][2]

反氢的同位素与其他反原子[编辑]

人们亦可利用同样方法制造反氘D2H)、反氚T3H),或甚至是反氦He),只是其难度更高。在2011年4月29日出版的英国《自然》杂志上刊登了成功合成反氦-4的消息,方法是将两个接近光速的金原子核对撞,通过筛选共探测到18个反氦-4的信号。

参看[编辑]

参考文献[编辑]

  1. ^ 1.0 1.1 Ahmadi, M; 等. Observation of the 1S–2S transition in trapped antihydrogen. Nature. 2016-12-19 [2016-12-21]. doi:10.1038/nature21040 (英语). 
  2. ^ Castelvecchi, Davide. Ephemeral antimatter atoms pinned down in milestone laser test. Nature. 2016-12-19 [2016-12-20] (英语). 

外部链接[编辑]