# 重力塌縮

## 恆星衰亡中的重力塌縮

### 恆星的相對論模型

${\displaystyle ds^{2}=-e^{2\alpha (r)}dt^{2}+e^{2\beta (r)}dr^{2}+r^{2}d\Omega ^{2}\,}$

${\displaystyle G_{\mu \nu }=R_{\mu \nu }-{\frac {1}{2}}Rg_{\mu \nu }=8\pi GT_{\mu \nu }\,}$

${\displaystyle G_{tt}={\frac {1}{r^{2}}}e^{2(\alpha -\beta )}\left(2r\partial _{r}\beta -1+e^{2\beta }\right)\,}$
${\displaystyle G_{rr}={\frac {1}{r^{2}}}\left(2r\partial _{r}\alpha +1-e^{2\beta }\right)\,}$
${\displaystyle G_{\theta \theta }=r^{2}e^{-2\beta }\left[\partial _{r}^{2}\alpha +\left(\partial _{r}\alpha \right)^{2}-\partial _{r}\alpha \partial _{r}\beta +{\frac {1}{r}}\left(\partial _{r}\alpha -\partial _{r}\beta \right)\right]\,}$
${\displaystyle G_{\phi \phi }=\sin ^{2}\theta G_{\theta \theta }\,}$

${\displaystyle T_{\mu \nu }=\left(\rho +p\right)U_{\mu }U_{\nu }+pg_{\mu \nu }\,}$

${\displaystyle U_{\mu }=\left(e^{\alpha },0,0,0\right)\,}$

${\displaystyle T_{\mu \nu }={\begin{pmatrix}e^{2\alpha }\rho &&&\\&e^{2\beta }p&&\\&&r^{2}p&\\&&&r^{2}\left(sin^{2}\theta \right)p\end{pmatrix}}}$

${\displaystyle {\frac {1}{r^{2}}}e^{-2\beta }\left(2r\partial _{r}\beta -1+e^{2\beta }\right)=8\pi G\rho \,}$

${\displaystyle rr\,}$分量為

${\displaystyle {\frac {1}{r^{2}}}e^{-2\beta }\left(2r\partial _{r}\alpha +1-e^{2\beta }\right)=8\pi Gp\,}$

${\displaystyle \theta \theta \,}$分量為

${\displaystyle e^{-2\beta }\left[\partial _{r}^{2}\alpha +\left(\partial _{r}\alpha \right)^{2}-\partial _{r}\alpha \partial _{r}\beta +{\frac {1}{r}}\left(\partial _{r}\alpha -\partial _{r}\beta \right)\right]=8\pi Gp\,}$

${\displaystyle m(r)={\frac {1}{2G}}\left(r-re^{2\beta }\right)\,}$

${\displaystyle e^{2\beta }=\left[1-{\frac {2Gm(r)}{r}}\right]^{-1}\,}$

${\displaystyle ds^{2}=-e^{2\alpha (r)}dt^{2}+\left[1-{\frac {2Gm(r)}{r}}\right]^{-1}dr^{2}+r^{2}d\Omega ^{2}\,}$

${\displaystyle {\frac {dm}{dr}}=4\pi r^{2}\rho \,}$

${\displaystyle m(r)=4\pi \int _{0}^{r}\rho \left(r^{\prime }\right)r^{\prime 2}dr^{\prime }\,}$

${\displaystyle M=m(R)=4\pi \int _{0}^{R}\rho (r)r^{2}dr\,}$

${\displaystyle m(r)\,}$的物理意義似乎就是對星體內部的能量密度在半徑${\displaystyle r\,}$的範圍內積分，亦即這一範圍內的星體質量。不過，如果我們考慮在度規定義下的空間積分，積分的體元應該由下式給出

${\displaystyle {\sqrt {\gamma }}d^{3}x=e^{\beta }r^{2}\sin \theta drd\theta d\phi \,}$

${\displaystyle \gamma _{ij}dx^{i}dx^{j}=e^{2\beta }dr^{2}+r^{2}d\theta ^{2}+r^{2}\sin ^{2}\theta d\phi ^{2}\,}$

{\displaystyle {\begin{aligned}{\bar {M}}&=4\pi \int _{0}^{R}\rho (r)r^{2}e^{\beta (r)}dr\\&=4\pi \int _{0}^{R}{\frac {\rho (r)r^{2}}{\left[1-{\frac {2Gm(r)}{r}}\right]^{1/2}}}dr\end{aligned}}}

${\displaystyle {\frac {d\alpha }{dr}}={\frac {Gm(r)+4\pi Gr^{3}\rho }{r[r-2Gm(r)]}}\,}$

${\displaystyle (p+\rho ){\frac {d\alpha }{dr}}=-{\frac {dp}{dr}}\,}$

${\displaystyle {\frac {dp}{dr}}=-{\frac {(\rho +p)\left[Gm(r)+4\pi Gr^{3}p\right]}{r[r-2Gm(r)]}}\,}$

${\displaystyle p=K\rho ^{\gamma }\,}$

${\displaystyle \rho (r)={\begin{cases}\rho ,&rR\end{cases}}}$

${\displaystyle m(r)={\begin{cases}{\frac {4}{3}}\pi r^{3}\rho ,&rR\end{cases}}}$

${\displaystyle p(r)=\rho \left[{\frac {R{\sqrt {R-2GM}}-{\sqrt {R^{3}-2GMr^{2}}}}{{\sqrt {R^{3}-2GMr^{2}}}-3R{\sqrt {R-2GM}}}}\right]\,}$

${\displaystyle e^{\alpha (r)}={\frac {3}{2}}\left(1-{\frac {2GM}{R}}\right)^{1/2}-{\frac {1}{2}}\left(1-{\frac {2GMr^{2}}{R^{3}}}\right)^{1/2},\qquad r

${\displaystyle p(0)=\rho \left[{\frac {R{\sqrt {R-2GM}}-R{\sqrt {R}}}{R{\sqrt {R}}-3R{\sqrt {R-2GM}}}}\right]\,}$

${\displaystyle M={\frac {4}{9G}}R\,}$時這個表達式的值為無窮大，而任何大於這個值的質量${\displaystyle M\,}$在廣義相對論中都沒有對應的定態解。也就是說，當我們將一顆超過這個質量的恆星壓縮到給定的半徑${\displaystyle R\,}$之內後，這顆恆星會不斷地塌縮直到形成一個恆星黑洞。實際上，任何定態的球對稱星體的質量都受到${\displaystyle M<{\frac {4}{9G}}R\,}$這個關係的制約。

### II型超新星的重力塌縮

II型超新星是大質量恆星重力塌縮的結果。儘管相關的理論研究已經長達三十餘年，以及對超新星SN 1987A的觀測取得了相當寶貴的成果，在超新星重力塌縮的理論研究中仍有很多部分和細節完全沒有弄清楚，它們塌縮的細節有可能彼此之間存在很大差異[3]。一般認為質量在9倍太陽質量以上大質量恆星在核融合反應的最後階段會產生鐵元素的內核，其內核的塌縮速度可以達到每秒七萬千米（約合0.23倍光速[6]，這個過程會導致恆星的溫度和密度發生急劇增長。內核的這一能量損失過程終止於向外簡併壓力與向內重力的彼此平衡。在光致蛻變的作用下，γ射線將鐵原子分解為氦原子核並釋放中子，同時吸收能量；而質子和電子則通過電子俘獲過程（不可逆β衰變）合併，產生中子和逃逸的微中子

## 參考文獻

1. Gravitational Collapse. MSN Encarta. [2008-12-24] （英語）.[失效連結]
2. Bernard Schutz. Gravitational Waves Astronomy. Classical and Quantum Gravity. 1999, 16: A131–A156. doi:10.1088/0264-9381/16/12A/307.
3. Kip S. Thorne. Gravitational Waves. 1995.
4. ^ Dina Prialnik. An Introduction to the Theory of Stellar Structure and Evolution. Cambridge University Press. 2000. chapter 10. ISBN 0521650658.
5. ^ Sean Carroll. Spacetime and Geometry: An Introduction to General Relativity. Benjamin Cummings. 2003-09-28. ISBN 978-0805387322 （英語）.
6. Fryer, C. L.; New, K. C. B. Gravitational Waves from Gravitational Collapse. Max Planck Institute for Gravitational Physics. January 24, 2006 [2006-12-14]. （原始內容存檔於2006年12月13日）.
7. ^ Mann, Alfred K.]. Shadow of a star: The neutrino story of Supernova 1987A. New York: W. H. Freeman. 1997: 122. ISBN 0716730979.
8. ^ Gribbin, John R.; Gribbin, Mary. Stardust: Supernovae and Life - The Cosmic Connection. New Haven: Yale University Press. 2000: 173. ISBN 9780300090970.
9. Woosley, Stan; Janka, Hans-Thomas. The Physics of Core-Collapse Supernovae (PDF). Nature Physics. December 2005, 1 (3): 147–154. doi:10.1038/nphys172.
10. ^ Barwick, S.; Beacom, J.; 等. APS Neutrino Study: Report of the Neutrino Astrophysics and Cosmology Working Group (PDF). American Physical Society. October 29, 2004 [2006-12-12].
11. ^ Hayakawa, T.; 等. Principle of Universality of Gamma-Process Nucleosynthesis in Core-Collapse Supernova Explosions. The Astrophysical Journal. 2006, 648: L47–L50. doi:10.1086/507703.
12. ^ Richmond, Michael. Late stages of evolution for low-mass stars. Rochester Institute of Technology. [2006-08-04].
13. ^ S. Myra, Eric; Burrows, Adam. Neutrinos from type II supernovae- The first 100 milliseconds. Astrophysical Journal. 1990, 364: 222–231. doi:10.1086/169405.
14. ^ Fryer, C. L.; New, K. B. C. Gravitational Waves from Gravitational Collapse, section 3.1. Los Alamos National Laboratory. January 24, 2006 [2006-12-09]. （原始內容存檔於2006年10月13日）.
15. ^ Chris L., Michael. Black Hole Formation from Stellar Collapse. Classical and Quantum Gravity. 2003, 20 (10): S73–S80 [2007-02-01]. doi:10.1088/0264-9381/20/10/309.
16. ^ Cosmological Gamma-Ray Bursts and Hypernovae Conclusively Linked. European Organisation for Astronomical Research in the Southern Hemisphere (ESO). June 18, 2003 [2006-10-30]. （原始內容存檔於十一月 2, 2006）.
17. ^ Fryer, Chris L. Mass Limits For Black Hole Formation. The Astrophysical Journal. 1999, 522 (1): 413–418 [2007-02-01]. doi:10.1086/307647.
18. ^ Boen, Brooke. NASA's Chandra Sees Brightest Supernova Ever. NASA. May 5, 2007 [2007-08-09].
19. ^ Sanders, Robert. Largest, brightest supernova ever seen may be long-sought pair-instability supernova. University of California, Berkeley. May 7, 2007 [2006-05-24].
20. ^ L. Wang; 等. The Axisymmetric Ejecta of Supernova 1987A. The Astrophysical Journal. 2002, 579: 671–677. doi:10.1086/342824.
21. ^ Mann, Alfred K.. Shadow of a star: The neutrino story of Supernova 1987. New York: W. H. Freeman. 1997: p. 122. ISBN 0716730979.
22. ^ Kei Kotake, Shoichi Yamada and Katsuhiko Sato. Gravitational radiation from axisymmetric rotational core collapse. Physical Review D. 2003, 68: 044023. doi:10.1103/PhysRevD.68.044023.
23. ^ Cole Miller. Continuous and Burst Sources (PDF). Astrophysics of GW Sources, Gravitational Wave Astronomy Summer School 2006.[失效連結]