微生物

維基百科,自由的百科全書
前往: 導覽搜尋
一群放大10000倍的大腸桿菌細菌

微生物通常是所有難以用肉眼直接看到或看不清楚的一切微小生物的總稱,包括細菌、真菌、放線菌、原生動物、藻類等有細胞結構的微生物,也包括病毒、支原體、衣原體等無完整細胞結構的微生物。一般需要藉助顯微鏡來觀察研究。微生物個體微小(直徑小於0.1毫米),種類繁多(99%都是未知品種,且不斷增加),之於生態圈卻非常重要(能量來源與物質循環利用),是地球最多的生命形式,可以佔據上所有生物(這裡包含植物、海草等)總重量的一半之多,與人類日常生活、健康關係密切。微生物應用領域日益拓展,廣泛應用在食品、醫藥、環保等領域。[1]

主要特性[編輯]

體積小,面積大[編輯]

一個體積恆定的物體,被切割的越小,數量越多,其相對表面積越大。微生物體積很小,如一個典型的球菌,其體積約1mm³,可是其相對表面積卻很大。這個特徵也是賦予微生物其他如代謝快等特性的基礎。

吸收多,轉化快[編輯]

微生物通常具有極其高效的生物化學轉化能力。據研究,乳糖菌在1個小時之內能夠分解其自身重量1000-10000倍的乳糖,產朊假絲酵母菌的蛋白合成能力是大豆蛋白合成能力的100倍。

生長繁殖快[編輯]

相比於大型動物,微生物具有極高的生長繁殖速度,微生物理論上能做到指數級增長。大腸桿菌能夠在12.5-20分鐘內繁殖1次。不妨計算一下,1個大腸桿菌假設20分鐘分裂1次,1小時3次,1晝夜24小時分裂24×3=72次,大概可產生4722366500萬億個(2的72次方),這是非常巨大的數字。但事實上,由於各種條件的限制,如營養缺失、競爭加劇、生存環境惡化等原因,微生物無法完全達到這種指數級增長。 已知大多數微生物生長的最佳pH範圍為7.0 (6.6~7.5)附近,部分則低於4.0。

微生物的這一特性使其在工業上有廣泛的應用,如發酵、單細胞蛋白等。微生物是人類不可或缺的好朋友。

適應強,易變異[編輯]

源於體積小面積大的特點,微生物具有非常靈活的適應性或代謝調節機制。微生物對各種環境條件尤其是地球上極端惡劣環境如高溫、強酸、高鹽、高輻射、低溫等環境的適應能力,令人驚奇。

微生物個體一般是單細胞、非細胞或者簡單多細胞,加之繁殖快、數量多等特點,即使變異頻率十分低,也能在短時間內產生大量遺傳變異的後代。有益的變異能為人類社會創造巨大經濟和社會效益。有害變異是人類大敵。

分布廣,種類多[編輯]

由於微生物體積小、重量輕和數量多等原因,地球上除了火山的中心區域等少數地方外,到處都有他們的蹤跡。 微生物種類多主要體現在以下五個方面:物種的多種多樣;生理代謝類型的多樣性;代謝產物的多樣性;遺傳基因的多樣性;生態類型的多樣性。

微生物的發現[編輯]

史前期[編輯]

約8000年前——1676前,人類對微生物的認識處於朦朧階段,未能看到細菌等微生物的個體,憑藉實踐經驗利用微生物的有益活動,如釀酒、發麵、釀醋等。

初創期[編輯]

1676年~1861年,處於對微生物的形態描述階段。標誌事件是微生物學先驅列文虎克用自製顯微鏡觀察到了細菌等微生物的個體。人類能夠對微生物進行簡單的形態描述。

奠基期[編輯]

1861-1897年,屬於生理水平研究階段。這個階段代表人物有,巴斯德,微生物學的奠基人,其開創的巴氏消毒法,至今仍在廣為使用。科赫,細菌學的奠基人。這個階段,微生物學開始逐步;學者們創立了整套獨特的微生物學基本研究方法;開始使用「實踐-理論-實踐」的思想方法開展研究。進入尋找人類和動物病原菌的黃金時期。

發展期[編輯]

1897-1953年,處於生化水平研究階段。這個時期主要代表人是E.Buchner,他對無細胞酵母菌「酒化酶」進行生化研究,發現微生物的代謝統一性。普通微生物學開始逐步形成。開始廣泛尋找微生物的有益代謝產物。發現了青黴素,推動了微生物工業化培養的迅猛發展。

成熟期[編輯]

1953年至今,處於分子生物學研究水平。這個時期的代表人是J.Watson和F.Crick,他們是分子生物學奠基人。這個時期的特點是,廣泛運用分子生物學理論和現代研究方法,深刻揭示微生物的生命活動規律;採取基因工程的方法,把傳統的工業發酵提高到發酵工程新水平;大量理論性、交叉性、應用性和實驗性分支學科飛速發展;微生物的基礎理論和獨特實驗技術推動了生命科學各個分科的快速發展。

微生物的代謝[編輯]

微生物的代謝指微生物(細胞)內發生的全部化學反應。 微生物的代謝異常旺盛,這是由於微生物的表面積與體積比很大(約是成年人的30萬倍),使它們能夠迅速與外界環境進行物質交換。

代謝產物 微生物在代謝過程中,會產生多種代謝產物。根據代謝產物與微生物生長繁殖的關係,可以分爲初級代謝產物次級代謝產物兩類。 初級代謝產物是指微生物通過代謝活動產生的、自身生長和繁殖所必須的物質,如胺基酸核苷酸多糖脂質維生素等。在不同種類的微生物細胞中,初級代謝產物的種類基本相同。 次級代謝產物是指微生物生長到一定階段才產生的化學結構十分複雜,對該微生物無明顯生理功能,或並非是微生物生長和繁殖所必須的物質,如抗生素毒素激素色素等。不同種類的微生物所產生的次級代謝產物不相同,它們可能積累在細胞內,也可能排到外環境中。

代謝的調節 微生物在長期的進化過程中,形成了一整套完善的代謝調節系統,以保證証代謝活動經濟而高效地進行。微生物的代謝調節主要有兩種方式:合成的調節和酶活性的調節,前者是通過調節酶合成的數量實現代謝調控,後者是通過改變酸鹼環境或酶結構來實現對代謝的調控。 另外人工控制微生物代謝的措施包括改變微生物遺傳特徵,控制生産過程中的各種生化條件等。

主要分類[編輯]

微生物主要分為以下幾類:(參見生物分類總表

土壤微生物是存在於地表面或土壤顆粒間隙和顆粒表面的微生物。土壤中可以觀察到細菌、放線菌、子囊菌、擔子菌、酵母菌、藻類、原生動物等多種微生物。其種類和數目隨土層深度、氫離子濃度、溫度、濕度和季節而有明顯變化。藻類在地表面或靠近地表面的土層進行光合作用,硝化細菌、鐵細菌和硫細菌等進行化學合成作用,其他微生物則營有機營養生活。在深層土壤等特殊條件下還發現有進行特殊化學合成作用的無機營養型細菌。細菌多分布在中性至弱鹼性土壤,好氧性細菌多分布在上部土層,厭氧性細菌則多分布在下部土層。真菌多分布在酸性土壤。枯草桿菌、假單胞菌、梭狀芽孢桿菌、大腸桿菌、纖維分解菌、放線菌以及各種真菌等,都是營有機營養生活的,都能分解土壤有機質,作為分解者而在自然界(生態系)的物質循環中起著重大作用。由土壤微生物引起的土壤呼吸與碳素循環有關,而由土壤微生物引起的固氮作用、硝化作用、反硝化作用等則與氮素循環有關。生物體內保持的營養鹽分,經土壤微生物分解礦化,重新轉化為植物能夠利用的形態。S.A.Waksman很重視土壤微生物社會中由抗菌物質的存在所出現的生物拮抗作用

英文參考 soil microbes , soil microorganisms

微生物學及其分科[編輯]

  • 按研究基本生命活動規律來劃分,有微生物分類學,微生物生理學,微生物遺傳學,微生物生態學,分子微生物學等等。
  • 按微生物應用領域來劃分,有工業微生物學,農業微生物學,醫學微生物學,藥用微生物學,診斷微生物學,抗生素學,食品微生物學等等。
  • 按研究對象來劃分,有細菌學,真菌學(菌物學),病毒學,原核生物學,自養菌生物學,厭氧菌生物學等。
  • 按微生物所處的生態環境劃分,有土壤微生物學,微生態學,海洋微生物學,環境微生物學,水微生物學,宇宙微生物學等。
  • 按學科間的融合交叉劃分,有化學微生物學,分析微生物學,微生物生物工程學,微生物化學分類學,微生物數值分類學,微生物地球化學,微生物信息學等。

微生物的作用[編輯]

微生物與人類生產生活和生存息息相關。有很多食品(如醬油味精酸奶奶酪蘑菇)、工業品(如皮革紡織石化)、藥品(如抗生素疫苗維生素生態農藥)是依賴於微生物製造的;微生物在礦產探測與開採、廢物處理(如水淨化沼氣發酵)等各種領域中也發揮重要作用。微生物是自然界唯一認知的固氮者(如大豆根瘤菌)與動植物殘體降解者(如纖維素降解),同時位於常見生物鏈的首末兩端,從而完成碳、氮、硫、磷等生物質在大循環中的銜接。若沒有微生物,眾多生物就失去必需的營養來源、植物的纖維質殘體就無法分解而無限堆積,就沒有自然界當前的繁榮與秩序或人類的產生與維續。

此外,微生物對地球上氣候的變化也起著重要作用。許多微生物直接參與了溫室氣體的排放或者吸收,而也有很多微生物可以成為未來的生物燃料[2]

使食品腐敗的微生物[編輯]

使食品腐敗的微生物
微生物 Gram’s(+,-) 外型 需氧情形 特徵 食品腐敗
假單胞菌

Pseudomonas

陰性 桿菌 好氧 無芽胞、嗜冷、產色素 魚、貝、肉、乳
微球菌

Micrococcaceae(小球菌)

陽性 球菌 好氧 嗜中溫、分解醣類產酸
葡萄球菌

Staphylococcus(Cluster群狀的球體菌)

陽性 球菌 兼性厭氧 嗜中溫、分解醣類產酸
芽孢桿菌

Bacillus

陽性 桿菌 好氧、兼性厭氧 產孢、嗜中溫 魚、肉的腐敗與中毒
梭菌

Clostridium

陽性 桿菌 厭氧 產孢、嗜中溫 魚、肉的腐敗與中毒
腸桿菌

Enterobacteriaceae(腸細菌屬)

陰性 桿菌 好氧、兼性厭氧 無芽孢、發酵糖產酸、產氣 食品的酸敗、腐臭、變形桿菌、沙雷氏菌
弧菌

Vibrio

黃桿菌

Microbacterium maritypicum

陰性 弧菌

桿菌

兼性厭氧 低溫、低鹽(3~5%)生長 魚、貝類腐敗
嗜鹽桿菌

Halophiles

嗜鹽球菌

Halococcus Schoop

陰性 桿菌

球菌

好氧 高濃度鹽水 海產魚、並可產生橙紅色素
醋酸桿菌 陰性 桿菌 好氧 蔬果、果汁、使酒腐敗
乳酸桿菌

丙酸桿菌

陽性 桿菌 兼性厭氧、耐氧 乳製品的酸敗

微生物與人類健康[編輯]

微生物與人類健康密切相關。多數微生物對人體是無害的。實際上,人體的外表面(如皮膚)和內表面(如腸道)生活著很多正常、有益的菌群。它們占據這些表面並產生天然的抗生素,抑制有害菌的著落與生長;它們也協助吸收或親自製造一些人體必需的營養物質,如維生素和胺基酸。這些菌群的失調(如抗生素濫用)可以導致感染發生或營養缺失。然而另一方面,人類與動植物的疾病也有很多是由微生物引起,這些微生物叫做病原微生物pathogenic microorganism)或病原pathogen)。重要的人類致病微生物列於下表中。

主要的人類致病微生物
疾病名稱 致病原 全球感染(攜帶者)人數 每年新發病例數 每年死亡人數
結核 結核分枝桿菌 ~20億人(全球三分之一人口) 881萬例 (2003 [1]) 175萬人(2003 [2]
愛滋病 人類免疫缺陷病毒 4200萬人 550萬例 310萬人
痢疾 志賀氏菌痢疾桿菌大腸埃希氏桿菌 27億例 190萬人
瘧疾 瘧原蟲 3-5億例 100萬人

其他經常聽說的致病微生物還有引起炭疽病炭疽桿菌

對現代生物學研究與醫學技術的貢獻[編輯]

現代生物學的若干基礎性的重大發現與理論,是在研究微生物的過程中或以微生物為實驗材料與工具取得的。這些理論包括:

  • 證明DNA脫氧核糖核酸)是遺傳信息的載體(三大經典實驗:肺炎球菌的轉化實驗、噬菌體實驗、植物病毒的重組實驗)
  • DNA的半保留複製方式(雙螺旋的每一條子鏈分別、都是複製模板)
  • 遺傳密碼子的解讀(64個密碼子各對應20種胺基酸及終止信號的哪一種)
  • 基因轉錄調節(operon, promoter, operator, repressor, activator的概念與調節方式)
  • 信使RNA翻譯調節(terminator)
  • 等等……(請添加)

現在,很多常用、通用的生物學研究技術依賴於微生物,比如:

很多醫學技術也依賴於微生物。比如:

參考文獻[編輯]

  1. ^ 周德慶.2011.微生物學教程(第三版).高等教育出版社,北京
  2. ^ Lucy Goodchild. Microbes as climate engineers. eurekalert. 29-Jan-2008 [2008-01-31]. 
  • 沈萍,陳向東.2006年5月.微生物學(第二版).高等教育出版社,北京
  • 張甲耀,宋碧玉等.2008年12月.環境微生物學.武漢大學出版社,武漢