相變材料

維基百科,自由的百科全書
跳至導覽 跳至搜尋
圖為乙酸鈉加熱墊英語heating pad,當乙酸鈉溶液晶化時,放出大量熱。
加熱墊晶化放熱視頻

相變材料(英語:phase change material,縮寫為:PCM)是指在相變時放出或吸收大量熱,以達到加熱或降溫作用的物質。通常情況下,該物質將在液態和固態間進行轉變,但也可以在非傳統狀態間進行轉變,例如從一種結晶態轉變為能量更高或更低的另一種結晶態。

相變材料物質狀態改變時所需的熔化熱通常遠大於其顯熱英語sensible heat,相變溫度(PCT)附近融化和凝固時,相變材料可以儲存和釋放巨大的能量。例如,冰融化成水的熔化熱為333.55 J/g,即一克冰需要吸收333.55 J熱量才能融化成水。然而一克水吸收4.18 J熱量溫度升高1度。因此水/冰是一種非常有用的相變材料,自阿契美尼德王朝開始人們就用它在冬天釋放熱量,在夏天給房子降溫。

相變材料可按組成物質種類進行分類。有機相變材料通常從石油、植物或動物上提取,水合鹽相變材料通常由海水或礦物中提取。還有一類是固體轉變為固體的相變材料。他們在生活中有著廣泛的應用,加熱墊、電話配電箱冷卻和服飾製造等都可以看到相變材料的身影。

特性和分類[編輯]

液體→固體、固體→液體、固體→氣體和液體→氣體的變化過程均可儲存潛熱,但只有液體→固體和固體→液體變化過程較為現實。儘管液體→氣體過程中轉換的熱量更多,但是氣態體積較大,存儲需要高壓,不易於使用。固態→固態的轉變速度十分緩慢,轉換的熱量相對較少。

固態-液態相變材料在達到相變溫度前,其特性與顯熱英語sensible heat儲存材料相似,吸收熱量的同時溫度逐漸上升。但是當到達相變溫度(熔點)時,開始大量吸收熱量,但是溫度保持不變,材料完全融化後,溫度繼續上升。當液態材料所處環境溫度下降時便開始凝固,釋放其所儲存的潛熱。各種相變材料可供選擇,−5到190 °C之間任意相變溫度均有對應。[1]而在20-30 °C人體舒適溫度範圍內,有些材料潛熱吸收十分高效,可以達到200 kJ/kg,與之對應的石料的熱容一般為1 kJ/kg.°C,因此保持相同溫度時每千克材料吸收的熱量是石料的200倍。[2]水的比熱容為4.21 kJ/kg.°C,該材料存儲密度為水的12.5倍至50倍之間。

有機相變材料[編輯]

碳氫化合物,主要是石蠟(CnH2n+2)和脂質類物質,也有一種是糖醇。[3][4][5]

  • 優點
    • 凝固時沒有過冷效應
    • 能夠一致地融化
    • 自成核性質
    • 與常規結構材料相容性好
    • 沒有隔離
    • 化學性質穩定
    • 安全、無反應
  • 缺點
    • 固態導熱係數低,冷凍過程中需要保持高傳熱率。已發現的發現奈米複合材料可有效將熱導率提高216%[6][7]
    • 體積潛熱儲存容量可能較低
    • 易燃,置於專門的容器中可以有效隔離。

非有機相變材料[編輯]

水合鹽 (MxNyH2O) [8]

  • 優點
    • 體積潛熱儲存容量高
    • 易於獲取,成本低
    • 高熔點
    • 熱傳導率高
    • 熔化熱高
    • 不可燃
  • 缺點
    • 融化不一致,容易出現相位分離[9]
    • 對大多數材料有腐蝕性[10][11][12]可以封裝在不與之反應的塑料內克服
    • 某些混合物體積變化很大
    • 固態到液態轉變過程中出現的過冷現象是個麻煩,需要使用成核劑,反覆使用後可能不再起作用
Infinite R Energy Sheet
共晶水合鹽相變材料與成核劑和膠凝劑。應用於被動溫度穩定,為建築暖通系統節能。[13]

應用[編輯]

治療新生兒窒息英語birth asphyxia時在手術台上鋪設相變材料[14][15]
防凝保護系統英語Ice protection system凝固態轉變液體材料(S-PSL),[16] a class of phase change materials.

應用領域[1][17]包括並不局限於:

參見[編輯]

熱導管

參考資料[編輯]

  1. ^ 1.0 1.1 Kenisarin, M; Mahkamov, K. Solar energy storage using phase change materials. Renewable and Sustainable –1965. 2007, 11 (9): 1913–1965. doi:10.1016/j.rser.2006.05.005. 
  2. ^ Sharma, Atul; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews. 2009, 13 (2): 318–345. doi:10.1016/j.rser.2007.10.005. 
  3. ^ "Heat storage systems" (PDF) by Mary Anne White, brings a list of advantages and disadvantages of Paraffin heat storage. A more complete list can be found in AccessScience website from McGraw-Hill, DOI 10.1036/1097-8542.YB020415, last modified: March 25, 2002 based on 'Latent heat storage in concrete II, Solar Energy Materials, Hawes DW, Banu D, Feldman D, 1990, 21, pp.61–80.
  4. ^ Floros, Michael C.; Kaller, Kayden L. C.; Poopalam, Kosheela D.; Narine, Suresh S. Lipid derived diamide phase change materials for high temperature thermal energy storage. Solar Energy. 2016-12-01, 139: 23–28. Bibcode:2016SoEn..139...23F. doi:10.1016/j.solener.2016.09.032. 
  5. ^ Agyenim, Francis; Eames, Philip; Smyth, Mervyn. Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system. Renewable Energy. 2011-01-01, 36 (1): 108–117. doi:10.1016/j.renene.2010.06.005. 
  6. ^ Fleishcher, A.S. Improved heat recovery from paraffn-based phase change materials due to the presence of percolating graphene networks. Improved Heat Recovery from Paraffn-based Phase Change Materials Due to the Presence of Percolating Graphene Networks. 2014, 79: 324–333. 
  7. ^ (2015). Thermal energy storage using phase change materials: fundamentals and applications. Springer
  8. ^ Phase Change Energy Solutions https://id.elsevier.com/as/authorization.oauth2?platSite=SD%2Fscience&scope=openid+email+profile+els_auth_info+urn%3Acom%3Aelsevier%3Aidp%3Apolicy%3Aproduct%3Ainst_assoc&response_type=code&redirect_uri=https%3A%2F%2Fwww.sciencedirect.com%2Fuser%2Fidentity%2Flanding&authType=SINGLE_SIGN_IN&prompt=none&client_id=SDFE-v3&state=retryCounter%3D0%26csrfToken%3D7b73d88c-a46a-4ce5-8a58-7a21b367a560%26idpPolicy%3Durn%253Acom%253Aelsevier%253Aidp%253Apolicy%253Aproduct%253Ainst_assoc%26returnUrl%3Dhttps%253A%252F%252Fwww.sciencedirect.com%252Ftopics%252Fengineering%252Fsalt-hydrate%26prompt%3Dnone%26cid%3Dtpp-9ec8e252-5eaf-44ce-a8d4-838d9800b9b3. [February 28, 2018].  缺少或|title=為空 (幫助)
  9. ^ Cantor, S. DSC study of melting and solidification of salt hydrates. Thermochimica Acta. 1978, 26 (1–3): 39–47. doi:10.1016/0040-6031(78)80055-0. 
  10. ^ olé, A.; Miró, L.; Barreneche, C.; Martorell, I.; Cabeza, L.F. Corrosion of metals and salt hydrates used for thermochemical energy storage. Renewable Energy. 2015, 75: 519–523. doi:10.1016/j.renene.2014.09.059. 
  11. ^ A. Sharma; V. Tyagi; C. Chen; D. Buddhi. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews. February 2009, 13 (2): 318–345. doi:10.1016/j.rser.2007.10.005. 
  12. ^ Sharma, Someshower Dutt; Kitano, Hiroaki; Sagara, Kazunobu. Phase Change Materials for Low Temperature Solar Thermal Applications (PDF). Res. Rep. Fac. Eng. Mie Univ. 2004, 29: 31–64. 
  13. ^ Infinite R™. Insolcorp, Inc. [2017-03-01]. 
  14. ^ 14.0 14.1 Aravind, Indulekha; Kumar, KP Narayana. How two low-cost, made-in-India innovations MiraCradle & Embrace Nest are helping save the lives of newborns. timesofindia-economictimes. 2015-08-02. 
  15. ^ MiraCradle - Neonate Cooler. 
  16. ^ Chatterjee, Rukmava; Beysens, Daniel; Anand, Sushant. Delaying Ice and Frost Formation Using Phase-Switching Liquids. Advanced Materials. 2019, 0 (17): 1807812. ISSN 1521-4095. PMID 30873685. doi:10.1002/adma.201807812可免費查閱 (英語). 
  17. ^ Omer, A. Renewable building energy systems and passive human comfort solutions. Renewable and Sustainable Energy Reviews. 2008, 12 (6): 1562–1587. doi:10.1016/j.rser.2006.07.010. 
  18. ^ Chatterjee, Rukmava; Beysens, Daniel; Anand, Sushant. Delaying Ice and Frost Formation Using Phase-Switching Liquids. Advanced Materials. 2019, 0 (17): 1807812. ISSN 1521-4095. PMID 30873685. doi:10.1002/adma.201807812可免費查閱 (英語). 

來源[編輯]

  • PHASE CHANGE MATERIAL (PCM) BASED ENERGY STORAGE MATERIALS AND GLOBAL APPLICATION EXAMPLES

Zafer URE M.Sc., C.Eng. MASHRAE HVAC Applications

  • Phase Change Material Based Passive Cooling Systems Design Principal and Global Application Examples

Zafer URE M.Sc., C.Eng. MASHRAE Passive Cooling Application