科學

維基百科,自由的百科全書
前往: 導覽搜尋

科學英語:Science希臘語Επιστήμη)是在尊重客觀事實的前提下,設法探尋事物運作之明確規律的學科。科學活動所得的知識是條件明確的(不能模稜兩可或隨意解讀)、能經得起檢驗的,而且不能與任何適用範圍內的已知事實產生矛盾。科學原僅指對自然現象之規律的探索與總結,但人文學科也被越來越多地冠以「科學」之名。人們習慣根據研究對象的不同把科學劃分為不同的類別,傳統的自然科學主要有生物學物理學化學地質學天文學。邏輯學和數學的地位比較特殊,它們是其它一切科學的論證基礎和工具。

科學在認識自然的不同層面上設法解決各種具體的問題,強調預測結果的具體性和可證偽性,這有別於空泛的哲學。科學也不等同於尋求絕對無誤的真理,而是在現有基礎上,摸索式地不斷接近真理。故科學的發展史就是一部人類對自然界的認識偏差的糾正史。因此「科學」本身要求對理論要保持一定的懷疑性,因此它絕不是「正確」的同義詞。

含義[編輯]

「科學」不好以簡短文字加以準確定義。一般說來,科學涵蓋三方面含義:

  1. 觀察:致力於揭示自然真相,而對自然作用由充分的觀察或研究(包括思想實驗),通常指可通過必要的方法進行的,或能通過科學方法——一套用以評價經驗知識的程序而進行的。
  2. 假設:通過這樣的過程假定組織體系知識的系統性。
  3. 檢證:藉此驗證研究目標的信度與效度。

科學包括基礎科學與應用科學。基礎科學僅以通過試驗探究自然原理為目的,其成果一般不容易在短期內得到應用,如物理、化學、生物和地質學;應用科學則兼有探究原理與關注應用這兩個方面的動機,如醫學藥學應用光學氣象學科技考古學博弈論。按理來說,科學不同於純技術類學科,後者只涉及運用已有的知識與原理進行發明創造,而只帶來技術變革,不在原理層次挖掘出的新規律,如工程學法醫學農學林學。應用科學與純技術有時候很難界定。因科學與技術經常一起被提及,重要的技術發展有時也會被大眾視為是科學成就,例如袁隆平曾3次未評上中國科學院院士的一大理由就是雜交水稻在科學界常只被認為是工程學成就,而非科學成就。[1]大眾關於愛迪生算不算科學家的爭論也與之類似。一些學科是側重基礎研究還是側重應用研究可能會隨時間發展而變動。如天文學的前身占星學是為宗教儀式服務的,屬於應用類學科(當時還不算是科學);天文學目前是以基礎研究為主的科學,但也有發射宇宙衛星等少數可帶來實質性服務(如電台廣播與手機信號)的技術應用;天文學在實現星際移民與太空資源開發的未來可能又會變成以應用為主的學科。

與其它文化事物的聯繫[編輯]

科學雖然與宗教有過大衝突,但它與宗教和神秘主義並沒有嚴格的對立關係。尤其是近代社會變革以來,一些宗教也發生了適應社會進步的改革,與科學的矛盾趨於緩和。有布道者也開始用可支持自己宗教觀點的科學原理舉例,雖然解讀得很走樣。歷史有許多著名科學家都有宗教信仰,如歐拉柯西,宗教信仰並未使他們的科學視野有所局限。而知名物理學家恩里科·費米則是一個不可知論者,他對原子彈的研發和量子物理的發展有重要貢獻。費曼認為(在20世紀50年代)有超過半數的科學家無宗教信仰,而且科學不能論證上帝不存在。[2]與科學對立的事物主要是頑固守舊的原教旨主義、排斥理性的反智主義以及違反實證精神與客觀原則卻以「科學」自我標榜的偽科學

「如果一個人以所有人都能明白的口氣談論問題,那不難得知這肯定是某種深奧的哲學(意即「反正不是科學」)。但是,我打算講得更明確一些,我想讓大家以一種更誠實而非模稜兩可的方式理解我的意思。」
("A person talks in such generalities that everyone can understand him and it's considered to be some deep philosophy. However, I would like to be very rather more special and I would like to be understood in an honest way, rather than in a vague way.)

——理查·費曼《物理定律的本性》
(The Character of Physical Law)

除科學比哲學更腳踏實地地關注具體問題外,哲學與科學的區別也在於哲學沒有被廣泛認可的主流理論。而且哲學有很大一類分支,與科學的客觀態度相違背,即唯心主義。哲學雖無數次推動過科學進步,但現在與科學的聯繫越來越疏遠。科學的知識越來越多,越來越細,越來越難,專職的哲學家已很難明白基礎科學的前沿問題。相反,科學新概念的快速發展倒是對傳統哲學衝擊很大,如不可分空間不可定向流形蝴蝶效應、量子化假設、平行宇宙對稱性破缺單電子宇宙英語One-electron universe。由於科學與哲學(尤其是自然哲學)的淵源,科學的最高學位頭銜直到今天仍被叫作「Ph.D.」,即「自然哲學博士」。

因科學與懷疑論相容,所以以毫不懷疑的態度信奉無神論共產主義不被視作科學理論[3],而只是一種指導實踐的哲學。對社會主義理論之科學性的批評主要來自奧地利與英國哲學家卡爾·波普爾

未納入西方科學體系的方法論並不代表它就是不好的,例如中醫學。就研究角度而言,中醫學堅持整體論的研究方法,將人體各部分視為一個統一的整體對待,這與傳統西方科學對局部機理刨根問底的習慣完全相反。但自上世紀中期以來,西方科學也開始出現了關注系統科學的思潮。目前對中醫的主要研究不是浪費時間爭論中醫理論是否科學,而是用對比實驗確切地檢驗中醫療法中有哪些能有效醫治病人。2013年,史蒂文·諾維拉(Steven Novella)和大衛·科爾庫洪英語David Colquhoun曾撰文指出有關針灸的現有論文出現了一個奇怪的現象,即有些人的實驗結果表明針灸有療效,而另一些人所做的實驗則無顯著效果。因此2人推測針灸實驗可能出現假陽性結果。而對於假陽性結果為何比較多,2人則猜測安慰劑效應在起作用。[4]應當指出,數理統計學是地位特殊的科學,揭示的是隨機性的最一般規律,其方法既適用於西方各門類科學或技術研究,也適用於對中醫效果的評價。

語源[編輯]

說文解字,科,會意字:「從禾從斗,斗者量也」;故「科」學一詞乃取「測量」之學問之義為名。

唐朝到近代以前,「科學」作為「科舉之學」的略語,「科學」一詞雖在漢語典籍中偶有出現,但古中文中「科學」一詞所指涉的概念與近代中文「科學」不同,大多指「科舉之學」[5][6]。 最早使用「科學」一詞之人似可溯及到唐末的羅袞[5][7][8]

「科學」一詞由近代日本學界初用於對譯英文中的「Science」及其它歐洲語言中的相應詞匯,歐洲語言中該詞來源於拉丁文Scientia」,意為「知識」與「學問」,在近代側重關於自然的學問。

在日本幕府末期到明治時期,「科學」是專門的「個別學問」,有的在以「分科的學問」的意義被使用著。

明治元年,福澤諭吉執筆的日本最初的科學入門書《窮理圖解》出版。同時,明治時代「science」這個語言進入了的時候,啟蒙思想家西周使用「科學」作為譯詞[7]

甲午海戰以後,中國掀起了學習近代西方科技的高潮,清末主要通過近代化之路上走在前面的日本學習近代科學技術。樊洪業、吳鳳鳴等認為,中國最早使用「科學」一詞的學者大概是康有為。他出版的《日本書目誌》[9]中就列舉了《科學入門》、《科學之原理》等書目。辛亥革命時期,中國人使用「科學」一詞的頻率逐漸增多,出現了「科學」與「格致」兩詞並存的局面。在中華民國時期,通過中國科學社的科學傳播活動,「科學」一詞才取代「格致」。

嚴復首先用「西學格致」翻譯science,後來又借用了science的日語譯名「科學」。而著名思想家、政論家章太炎則明確要求為「科學」正名。他在1903年8月發表《論承用「維新」二字之荒謬》一文,大力批駁責用「格物」之名翻譯「物理學」(physics)很不適當。[10]

中國社會科學院語言研究所1978年出版的《現代漢語詞典》則認為科學是:

  1. 反映自然、社會[11]、思維等的客觀規律的分科的知識體系;
  2. 合乎科學(精神、方法等)的。

不過社會類學科的研究並不容易做到客觀分析。一方面是難以控制變量,另一方面是難以給出準確的適用範圍和嚴格的預測結果。

英文中「Science(科學)」一詞的含義有狹義與廣義之分,前者只指自然基礎科學(即數學自然科學;合稱「理科」),這與醫學藥學大地測量學等帶有應用目的的探索性學科相區別;後者泛指各種研究自然機理的應用性科學,但又與純粹研究技術應用、不探究機理的工程學、技術學和計算機信息學相區別。不過目前越來越多的人文學科和計算機學科甚至是文獻學也喜歡加上「科學」的頭銜。

如今的「科學」在中國古代的稱呼[編輯]

中國傳統上將所有的知識統稱「學問」,古代將關於自然物道理的學問稱為「物理」[12]因此古代的物理即是自然科學,數學學科獨立於「物理」。

而自明代時中國則稱為格致[13],即格物致知,以表示研究自然之物所得的學問。直至中日甲午戰爭以前出版的許多科學書籍多冠以格致格物之名。

歷史與哲學[編輯]

歷史[編輯]

約翰·赫維留與妻子伊莉莎白英語Elisabeth Hevelius於1673的觀測。他們是皇家學會的第一批外國成員。
1671年,法王路易十四訪問法國科學院

廣義的科學在歷史上許多古代文明就已經存在。[14]然而,現代科學的方法與以前有明顯的區別,同時現代的科學的成功也使其有目前的嚴格定義。但就基礎科學(不同於應用科學)而言,有一個特點變化不大,即相對寬裕的家境對於專職從事基礎科學研究來說是一個顯著優勢。而應用科學因相對來說較易出成果,且易轉化為可創造財富的生產力,故對專職研究者的家境不會有限制。

自然的哲學研究[編輯]

中世紀科學[編輯]

文藝復興時期與早期現代科學[編輯]

啟蒙時代[編輯]

19世紀[編輯]

20世紀[編輯]

科學哲學[編輯]

「這是現代科學的關鍵,也是理解自然的起點。這種理念,也即觀察事物,紀錄細節,希望能從中獲取信息,以便為另一個可能的新理論提供線索...下一個問題是——是什麼讓行星們繞著太陽旋轉呢?在克卜勒所處的時代,一些人回答說這是因為有天使在行星後面煽動翅膀,從而推動了行星繞著軌道運動。正如你將明白的一樣,這個答案其實離真相併不遠。唯一的差別只在於天使們是處於不同的方向,並藉助翅膀將行星向軌道內側推擠。」[15]

——理查·費曼《科學的價值》
(The Value of Science)

近代的科學,旨在理性、客觀的前提下,用知識(理論)與實驗有力地闡明事物運作的明確規律。由指以培根馬赫等人倡導的實證主義(不過培根低估了數學在科學研究中的重要性),伽利略為實踐先驅的實驗方法為基礎,以獲取關於世界的系統知識的研究。主要是以自然現象為對象的自然科學。有些人也將以社會現象對象社會科學納入其中,但社會學科的知識多隻局限於人類社會,而且沒有精確度很嚴密的數學公式或易證偽的命題。而藝術哲學宗教文學則完全不屬於科學。現代科學,有時還包括以人類思維存在為對象的思維科學

對於科學的核心特徵或者說所謂科學精神,隨著人類的進步,有不同的觀點,目前一般認為科學具有如下特徵:

  • 理性客觀:從事科學研究不以「神」、「鬼」、「上帝」為前提(一些科學家信仰宗教,但是「科學」本身是理性思維的結果),一切以客觀事實的觀察為基礎,通常科學家會設計實驗並控制各種變因來保證實驗的準確性,以及解釋理論的能力。科學理論不排斥「神」或「鬼」存在的可能性,只是反對故意裝神弄鬼的不誠實行為,避開缺乏可靠證據的神學空談。拉普拉斯認為科學是不藉助神怪假設而單憑理性解釋世界的學問。
  • 可否證性:這是來自卡爾·波普爾的觀點,人類其實無法知道一門學問裡的理論是否一定正確,但若這門學問有部份有錯誤時,人們可以嚴謹明確的證明這部分的錯誤,的確是錯的,那這門學問就算是合乎科學的學問。
  • 存在一個適用範圍:也就是說可以不是放之四海皆準的絕對真理。例如:牛頓力學在微觀世界失效。不過科學家們仍然努力尋找與探索是否有某種理論可以囊括所有自然現象(至少在物理界,將相對論與量子力學合併是一至少延續數十年的野心)。
  • 普遍必然性:科學理論來自於實踐,也必須回到實踐,它必須能夠解釋其適用範圍內的已知的所有事實。如果其適用範圍內有任何無法解釋的反例存在,那麼整個理論就都是錯的。
  • 研究過程需嚴格控制變量。對於相互作用不易分離的多個重要變量,可設法利用統計學方法(如方差分析)對來自不同變量的影響加以分離。

科學還可以分為從理論應用等多個層次。其中理論物理學除遵循上述原則外,還推崇還原論,追求用最簡略的假設描述廣泛而深刻的原理。蘇聯物理學家朗道指出「我們已知的大量物理定律可以由為數不多的最一般規律推演出來。」[16]愛因斯坦也指出任何事情都應該以最簡明扼要的方式呈現。[17]而應用科學則與社會發展有直接關係。在與社會進步的相互作用中,應用科學對實踐的指導作用得到不斷加強,科學體系本身也不斷壯大,它對人類歷史的重大影響日趨顯著。

科學實踐[編輯]

在望遠鏡發明前,第谷設計的用於觀測兩個天體間的角度的測量儀器,大大提高了天文學精度。他的測量結果是克卜勒定律的基礎。

測量[編輯]

科學中常常使用測量來作出對比並減少分歧。即便是有明顯的區別,也會通過測量提高精度,以便提高可重複性。例如不同的顏色可以通過波長來區分,而不使用「綠」或「藍」等「模糊」的概念。 測量常使用國際單位制(SI),其中包括基本單位:千克, , 坎德拉, , 安培, 開爾文摩爾。除了kg以外,其他六個單位是非人工定義的(不是以特定的物體為標準)。

七個SI系統的基本單位以及它們之間的關係[何意?]

第一個提出專門用於實驗的國際基本單位的是查爾斯·桑德斯·皮爾士 (1839–1914),[18] 他提出用來定義譜線的波長。[19] 這直接影響到邁克耳孫-莫雷實驗; 邁克耳孫和莫雷參考他的方法並進行了改進。[20]

科學的方法[編輯]

任何研究方法要被視為科學方法,則必須是客觀的(科學家們不能對於科學方法下產生的單一結果有不同的解釋且研究時不能故意去改變結果的發生)。另一項基本期待,則是必須有完整的資料文件以供佐證,以及研究方法必須由第三者小心檢視,並且確認該方法能重製(但在量子力學中,製備完全一樣的複雜量子態是難以實現的;另外理論地理學也難以進行重複實驗,但規律無疑也是確定存在的)。

一般理解,科學是對自然規律的追求。科學定律,有一個重要的標準,就是不能有反例。任何一個客觀存在的,能夠重複的現象,如果於已有的科學定律矛盾,即宣布此科學定律的終結。這也是反證法在理論分析中的應用依據。

科學方法使用可再現的方法解釋自然現象。[21]從預測當中提出思想實驗或假設。預測是在確認實驗或觀察前提出的,用於證明其中沒有受到干預。而對預測的反證則是進步的證明。[22][23]科學研究者提出假說來解釋自然現象,然後設計實驗來檢驗這些假說,這種實驗需要在可控條件(控制變量)下模擬自然現象(在觀測科學,如天文學或地質學,可預測的觀察結果可以替代核對實驗)。整體而言,科學方法可以解決極度創新的問題而又不受主觀偏見的影響(又稱確認偏誤)。[24]

除上述原則外,目前多數科學研究大量依賴於數學方法。在制定實驗方案時,會藉助優選法試驗設計)知識優化不必要的多餘試驗,以達到事半功倍的效果。對於單次試驗成本較高的研究來說,減少不必要的試驗可以極大地節省經費開銷。在處理數據時,會應用SPSSMatLab等軟體便捷地分析和處理數據。偏難或偏繁雜的常見計算都可由軟體執行。主流的商業軟體都會充分考慮用戶的難處,所以界面設計大多簡潔明了,比較容易上手。而專業一些的軟體則需要較多一些的學習時間,如應用廣泛的R語言。許多軟體都會允許人們開發專門的軟體功能擴展包並發布下載,以方便有不同特定需要的研究人群。當研究者提出一個新的計算模型時,就能馬上通過編程在現有軟體的基礎上實現。對於由測量數據而得出的結論,還需要運用數理統計學方法檢測結果的顯著性。研究人員需要根據不同的樣本數量大小(是大樣本還是小樣本)和數據比較類型(是兩組數據比較還是多組間比較等)確定合適的統計模型,然後在軟體中輸入數據並計算結果的顯著性數值。如果顯著性標準不達標,則論文一般不會有通過評審的希望。這樣的行業現狀也有弊端,許多有啟示性的失敗實驗得不到機會發表;很多人會把論文數據的達標當成研究的頭等大事,而忽略了自己從事研究工作的初衷。

儘管目前所有理工學科和多數人文學科都不同程度地應用了數學作為論證工具,但數學在各種具體學科中應用時並不能喧賓奪主。一般來說,分析問題需要有所側重,優先考慮對問題影響重要的因素,能作近似處理的就先作近似,而非對每個因素都用同樣嚴格的數學方法處理,即提倡「重點論」的思想。在各個細節都努力追求數學嚴密性而忽略了問題的最主要矛盾是非常錯誤的做法。[16]如果一個問題的影響因素過多,難以分清主次,則可以嘗試利用統計學中主成分分析的方法加以確定。又如利用數學計算分析一個生物學模型時,比起計算結果是否準確或運算技巧是否高明,生物學家會更關心計算的結果是否能明顯地體現出某種生物學意義(如哪些自變量因變量影響最大?是正相關還是負相關?是幾次方的關係?是否在到達一定數量後會出現飽和效應?)以及能否順利通過大量實驗數據的驗證。

另外,雖然科學理論分不同層次。但基礎層面學科中的原理未必可直接適用於複雜層面的學科研究。這也導致了後來系統科學理論的出現。比如物理學是化學的基礎,很多化學現象歸根結底都可分解為一些量子層面的物理原理。雖然理論物理學家推崇還原論,但也承認量子力學中的微分方程求解方法在一般的化學實際研究中根本派不上用場。[25]化學研究中常遇到的多原子系統在物理學中是屬於非常複雜的模型,即使用近似方法計算也是極為繁雜的。所以化學家雖然需要學習和了解基本的物理原理,但會花更多時間掌握僅適用於本學科的特定研究方法。又如變分學和線性泛函分析雖然是現代物理學的重要數學基礎,但物理系學生一般不會像數學系學生一樣系統地學習這2門課程。又如雖然物理系和電子工程系都會開設專門的複變函數論課程,但一般的實際工作和研究中用到的複數知識並不多,多局限於複數的初等性質、復內積的性質、積分變換共形變換

科學界[編輯]

科學界包括了所有的科學家以及他們之間的互動和合作。一般其會被按不同工作的領域分成子社群。其中也有很多跨學科,跨機構的活動。

劃分與組織形式[編輯]

目前被冠以「科學」之名的學科主要可分為自然科學應用科學形式科學社會科學等四大領域。

自然科學是指應用經驗和科學的方法來研究宇宙以便闡明支配自然世界的規則的科學學科。「自然科學」這個名稱是用來與社會科學和形式科學相區分。

形式科學是指主要以抽象形態形式系統為研究對象的科學。與其他科學分宗不同,形式科學並不關心理論在現實世界的觀察中的有效性,而是更關心基於定義和規則之上的形式性質。但是其方法手段卻可以應用於構造和測試用來實踐現實觀測的科學模型。

機構[編輯]

文獻[編輯]

在論述非原創觀點或引用他人成果時,需要註明資料來源,以方便考證與查閱。現代學術服務機構普遍使用計算機資料庫儲存與檢索文獻

1665年1月,世界上第一個人文類學術期刊《學者周刊》(Journal des Sçavans)創刊。同年3月,第一個理工類研究雜誌《自然科學會報》創刊。此後,學術類期刊數量逐步增多。1981年時,曾有人估計當時的全球的學術期刊總數已達11500份。[26]僅與生命科學有關的學術雜誌,在美國國家醫學圖書館中就已列舉出5千份。雖涵蓋39種語言,但其中九成是英文雜誌。[27]

一般人文學科在需要引用文獻時,一般需多列幾項參考資料。對於理工學科而言,鑒於中國國內學術抄襲與造假的現象較多[28][29],在引用國內文獻時,一般也需多列幾項參考資料。少數行業精英有時在發表刊物或專著時,因幾乎均為原創內容,即使不寫參考資料也能順利發表,例如陶哲軒費曼朗道

目前的學術期刊廣泛採用同行評審的方式來履行學術質量把關。但同行評審機制不能完全防止學術造假的發生。[30]在知名雜誌發表論文時,同行評審會更加嚴格。不過同行評審非常嚴格的《科學》和《自然》等雜誌也有可能出現論文造假事件,21世紀初比較知名的學術造假案例有韓國科學家黃禹錫造假事件與日本科學家小保方晴子造假事件。

評價學術期刊影響力的常見參考標準之一是看其影響指數(IF)的大小。影響指數高的期刊會更引人關注。過於強調影響指數的作用則是一種迷信的行為。另外,影響指數評價的是期刊在一段時期內所有論文的平均影響力,而有些人誤把影響指數當作了判斷特定論文及其投稿人的水平標準。[31]在知名期刊發表論文的研究者更易獲得更多的科研經費。由於知名期刊的關注度更高,所以時間有限的人會優先閱覽知名期刊,長此以往,在知名期刊投稿的作者的被引用幾率會越來越大,而在不知名期刊投稿的作者的被引用幾率會越來越小,造成評價標準越來越不公平的惡性循環。[32]影響指數的提出者尤金·嘎菲德(Eugene Garfield)也指出同一期刊中不同文章的水平是不一樣的,不能一概而論,更不該作為評價個人能力的標準。[33]一種變通的應對方法是在發表論文時先嘗試給比自己預期稍好一些的雜誌投稿。2005年,物理學家喬治·希爾施(Jorge E. Hirsch)提出了用於評價物理學家個人研究能力的H指數

科學與社會[編輯]

穿實驗服的女科學家。

科學領域中的女性[編輯]

一份中世紀的《幾何原本》譯本開頭插畫(約1310年),圖中的婦女在教授幾何學。

女性很早就在科學領域中做出貢獻,但是古代的記載卻很少。

參見女性科學家列表

其它特殊群體[編輯]

知名的黑人科學家還很少。而希臘人在近現代科學發展中則光輝不再。

科學技術及其影響[編輯]

參看[編輯]

注釋[編輯]

  1. ^ 楊智昌; 趙殿川. 中科院院長:袁隆平落選中科院院士是「歷史的誤會」. 南方日報 (網絡版). 2008年3月15日: 該新聞的頁碼 [2016年1月5日]. 路甬祥表示,袁隆平完全有資格當選科學院院士,之所以沒有能當選,是因為那時候科技界、包括院士群體當中,對於一個人成就的評價也有一定的局限和偏頗,主要強調生命科學,當時比較強調的是在生命科學的前沿領域是否創造了新方法、新手段或者新思想,那就要求從分子生物學的角度來考察,而袁隆平還是用比較傳統的雜交辦法來做的,所以沒有能夠選上。 
  2. ^ 原文為「I do not believe that science can disprove the existence of God; I think that is impossible. And if it is impossible, is not a belief in science and in a God – an ordinary God of religion — a consistent possibility? Yes, it is consistent. Despite the fact that I said that more than half of the scientists don't believe in God, many scientists do believe in both science and God, in a perfectly consistent way. But this consistency, although possible, is not easy to attain...」摘自費曼《科學與宗教的關係》
  3. ^ 原文為「I would like to remark, in passing, since the word "atheism" is so closely connected with "communism," that the communist views are the antithesis of the scientific, in the sense that in communism the answers are given to all the questions – political questions as well as moral ones – without discussion and without doubt. The scientific viewpoint is the exact opposite of this; that is, all questions must be doubted and discussed; we must argue everything out – observe things, check them, and so change them. The democratic government is much closer to this idea, because there is discussion and a chance of modification. One doesn't launch the ship in a definite direction. It is true that if you have a tyranny of ideas, so that you know exactly what has to be true, you act very decisively, and it looks good – for a while. But soon the ship is heading in the wrong direction, and no one can modify the direction any more. So the uncertainties of life in a democracy are, I think, much more consistent with science.」摘自費曼《科學與宗教的關係》
  4. ^ Colquhoun, D; Steven Novella. Acupuncture is a theatrical placebo: the end of a myth (pdf). Anesthesia & Analgesia. 2013, 116 (6): 1360–1363. doi:10.1213/ANE.0b013e31828f2d5e. PMID 23709076. 
  5. ^ 5.0 5.1 周程 紀秀芳. 《究竟誰在中國最先使用了「科學」一詞?》. 《自然辯證法通訊》2009年第04期. ISSN 1000-0763. 
  6. ^ 佐々木力『科學論入門』p.3
  7. ^ 7.0 7.1 佐々木力『科學論入門』岩波書店1996年 ISBN:4004304571
  8. ^ 宋陳亮《送叔祖主筠州高要簿序》:「自科學之興,世之為士者往往困於一日之程文,甚至於老死而或不遇。」
  9. ^ 《日本書目志》,康有為輯,出版地:上海,出版社:上海大同譯書局光緒二十三年(1897年)成書《康南海自編年譜》中華書局1992年版
  10. ^ 王揚宗. 漢語「科學」一詞的由來. 科學網. 2012年5月14日 [2016-01-05]. 
  11. ^ 中國社科院自己出的詞典當然會把社會學算進去。
  12. ^ 「物理」一詞何時開始使用有待考證,古代科學家也有一些以物理命名的自然科學著作,如三國時期的楊泉著有《物理論》,明朝時期的方以智著有《物理小識》。
  13. ^ 明末清初,來華的歐洲耶穌會傳教士熊明遇的《格致草》、湯若望的《坤輿格致》等書的名稱就使用了「格致」一詞
  14. ^ "The historian ... requires a very broad definition of "science" — one that ... will help us to understand the modern scientific enterprise. We need to be broad and inclusive, rather than narrow and exclusive ... and we should expect that the farther back we go [in time] the broader we will need to be." — David Pingree (1992), "Hellenophilia versus the History of Science" Isis 83 554–63, as cited on p.3, David C. Lindberg (2007), The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context, Second ed. Chicago: Univ. of Chicago Press ISBN 978-0-226-48205-7
  15. ^ 原文為「This is the key of modern science and is the beginning of the true understanding of nature. This idea. That to look at the things, to record the details, and to hope that in the information thus obtained, may lie a clue to one or another of a possible theoretical interpretation...The next question was — what makes planets go around the sun? At the time of Kepler some people answered this problem by saying that there were angels behind them beating their wings and pushing the planets around an orbit. As you will see, the answer is not very far from the truth. The only difference is that the angels sit in a different direction and their wings push inward.」具體出處詳見其英文維基語錄
  16. ^ 16.0 16.1 列夫·朗道, 葉夫根尼·利夫希茨; 李俊峰, 鞠國興 (翻譯). 力學. 理論物理學教程. 高等教育出版社. 2007年. ISBN 978-7-04-020849-8. 我們已知的大量物理定律可以由為數不多的最一般規律推演出來。","近似分析在理論物理中起著極大的作用。首先,所有精確的規律都是近似的,儘管在絕大多數情況下這種近似給出的精確度非常高。其次,對物理規律並沒有絕對精確的要求。如果事先給定了某個現象的研究範圍,給出的規律只要滿足問題所設的精度要求也就足夠。因此,我們仍然使用牛頓力學來研究炮彈的運動...考慮非重要因素的過於精確的計算不僅會使計算結果毫無價值地複雜化,甚至還會導致存在於現象之中的規律被忽略。事實上,不僅規律的具體形式是近似的,而且刻畫現象的物理量之間的函數關係也是近似的,超出給定精度極限,這些物理量的關係可能是任意的。確定所研究現象的近似程度在理論研究中是極端重要的。最嚴重的錯誤是,採用非常精確的理論並計算所有的細節修正,同時卻忽略了比它們大得多的物理量。 
  17. ^ 原話為「It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience.」常簡作「Everything should be made as simple as possible, but no simpler.」具體出處詳見其英文維基語錄。
  18. ^ Crease 2011,第182–4頁
  19. ^ C.S. Peirce (July 1879) "Note on the Progress of Experiments for Comparing a Wave-length with a Metre" American Journal of Science, as referenced by Crease 2011,第203頁
  20. ^ Crease 2011,第203頁
  21. ^ di Francia 1976,第13頁: "The amazing point is that for the first time since the discovery of mathematics, a method has been introduced, the results of which have an intersubjective value!" (Author's punctuation)
  22. ^ di Francia 1976,第4–5頁: "One learns in a laboratory; one learns how to make experiments only by experimenting, and one learns how to work with his hands only by using them. The first and fundamental form of experimentation in physics is to teach young people to work with their hands. Then they should be taken into a laboratory and and taught to work with measuring instruments — each student carrying out real experiments in physics. This form of teaching is indispensable and cannot be read in a book."
  23. ^ Fara 2009,第204頁: "Whatever their discipline, scientists claimed to share a common scientific method that ... distinguished them from non-scientists."
  24. ^ Backer, Patricia Ryaby. What is the scientific method?. San Jose State University. October 29, 2004 [2008-03-28]. 
  25. ^ 理查·費曼. The Feynman Lectures on Physics [費曼物理學講義] 卷1. 艾迪生韋斯利. 1999. ISBN 978-0201021165. And the usual way of dealing with quantum mechanics makes that subject almost unavailable for the great majority of students because they have to take so long to learn it. Yet, in its real applications—especially in its more complex applications, such as in electrical engineering and chemistry—the full machinery of the differential equation approach is not actually used. 
  26. ^ Subramanyam, Krishna; Subramanyam, Bhadriraju. Scientific and Technical Information Resources. CRC Press. 1981. ISBN 0-8247-8297-6. OCLC 232950234. 
  27. ^ MEDLINE Fact Sheet. Washington DC: United States National Library of Medicine. [October 15, 2011]. 
  28. ^ Fred Barbash. Major publisher retracts 43 scientific papers amid wider fake peer-review scandal. 華盛頓郵報. 2015年3月27日 [2016年1月6日]. But Jigisha Patel, associate editorial director for research integrity at BioMed Central, said it’s not 'a China problem. We get a lot of robust research of China. We see this as a broader problem of how scientists are judged.' 
  29. ^ Fred Barbash; 邢春燕 (編譯), 羅昕 (編譯), 梁佳 (文字錄入). 英國現代生物出版集團近日撤銷43篇論文,41篇是中國作者. 澎湃新聞. 2015年3月31日 [2016年1月6日]. 
  30. ^ 羅昕. 學術論文的「同行評審」制度如今也不靠譜了?. 澎湃新聞. 2015年4月1日 [2016年1月6日]. 
  31. ^ 大衛·科爾庫洪英語David Colquhoun. Challenging the tyranny of impact factors [挑戰影響指數的霸權] (PDF). 自然. 2003, (423): 259–261 [2016年1月6日]. 
  32. ^ Ricardo Guerrero. Misuse and abuse of journal impact factors [期刊影響指數的誤用與濫用] (pdf). European Science Editing. 2001年8月, 27 (3). 
  33. ^ Eugene Garfield. The Impact Factor and Using It Correctly. Der Unfallchirurg. 1998年6月, 101 (6): 413–414. PMID 9677838. 

參考文獻[編輯]

擴展閱讀[編輯]