維基百科,自由的百科全書
前往: 導覽搜尋

船舶,指的是:舉凡利用水的浮力,依靠人力、風帆、發動機(如蒸氣機、燃氣渦輪、柴油引擎、核子動力機組)等動力,牽、拉、推、划、或推動螺旋槳、高壓噴嘴,使能在水上移動的交通運輸工具。另外,民用船一般稱為船(古稱舳艫)、輪機、舫,軍用船稱為艦(古稱艨艟)、艦艇,小型船稱為舢舨、、筏或舟,其總稱為艦艇或船舶。

船舶是隨著人類的發展而開發的。不論是戰時或是平時,都有船舶的出現。世界上有數百萬的漁民用漁船捕魚。戰時的海戰海上軍事補給英語Sealift都和船有關。2007年的商船約有35,000艘,貨物約有740萬噸[1]。2011年時,世界上已約104,304艘有船已取得由國際海事組織(IMO)發出的IMO編別號碼英語IMO ship identification number[2]

在歷史上,船舶對於地理探索及科學技術的發展都有重要的角色。像中國明朝鄭和指南針火藥傳播到其他地區。船舶有用像殖民奴隸貿易等用途,也有用在科學、文化及人道主義上。美洲及歐洲之間的哥倫布大交換是當時世界人口成長的主因之一[3]航運也使世界的經濟成為能源密集的形式。

術語[編輯]

船的主要部分。1煙囪2船尾3螺旋槳456球狀船首7船頭8甲板9上層建築 (工程)英語Superstructure

船(ship)和小艇(boat)的區別通常在於尺寸和航行時間。[4]一個經驗法則英語Rule of thumb是,如果一艘船舶能攜帶另一艘,那麼較大的那個就是船[5]。不過也有例外:像帆船遊艇英語Sailing yacht上面會載一個長2至6公尺的小艇英語Dinghy,兩種都不算是船。

大航海時代,船定義為具至少有三個橫帆桅杆和一個完整船首斜桅英語bowsprit的帆船,也會用桅杆來定義其他種類的船,像三桅帆船前桅橫帆雙桅船等。

有不少大型船舶通常被叫做「艇」,潛水艇就是最好的例子[6]

在通常的航海傳統里,船通常都有自己的名字英語Ship naming and launching,現代船隻可能還有船級英語ship class(通常以該級的第一艘船的船名命名)。英語中,船通常被稱為「她(she或her)」[7][8],即使船名是男士名字。但這也不是絕對的,有些寫作指南里也用「它(it)」來指船[9]

分類[編輯]

按用途[編輯]

拖斗挖泥船
泰國河上攤販船
  • 科考船 : 執行海洋科學研究的船隻。
  • 工程船 : 對航行中的船隻施行維護修理工作,或是執行水上與水下工程作業的船隻。
  • 漁船:使用於捕魚業的船隻。
  • 貨櫃船:專門運輸貨櫃的船舶,如躉船
  • 液貨船:用來運送液體的船。
  • 客輪:運送乘客的大型船隻。
  • 非商船:非商業行為目的所使用的船隻。
    • 快艇:主要用於水上娛樂,或賽艇比賽的船隻。種類很多,摩托艇,氣墊船都屬於這一類型。
    • 拖船:推拉大船進出港的専用船。
    • 引水船:帶引水人上下商船的専用船。
    • 指航船:指明航道的船隻。
  • 軍艦:軍事用途船舶,如巡洋艦驅逐艦等,船隻本身不用於軍事用途的軍屬船舶也歸為此類。
    • 潛水艇也是一種特殊的船舶。軍事用途的潛水艇歸於軍艦類。此外也有用於海底科研考察等工作的工作船類潛水艇。亦可用於海底觀光等。

按材料[編輯]

  • 鋼鐵船
  • 木造船
  • 合金船
  • 鐵絲網混凝土船——以混凝土來減少使用鋼材(例如「古田」號)
  • 玻璃纖維(Glass Reinforced Plastic,GRP)船

按構造[編輯]

一般常見的船隻為單體船,雙體船(TWIN HULL)有兩個瘦長的船體共用一個主甲板及上層結構,使用渦輪噴嘴發動機,通過向後噴水獲取反作用力向前推進,比普通螺旋槳推動更快速,而在高速時,雙體瘦長的船身能降低阻力。而且船體穩度高,不易翻船(但若風浪過大,翻過90度後,因為沒有單體船的靜穩度扶正力矩,反而有滅頂之虞)。常被應用於渡輪及軍事運輸上。

這是一種能高速航行的船舶。船底部有支架,裝上如飛機機翼般的水翼。當船加速後,水翼能產生浮力把船身抬離水面,從而減少水的阻力和增加航行速度。其轉向機構不使用常見的舵,而是控制左右兩支水翼的攻角來達成。

氣墊船是一種能高速航行的船隻,利用空氣在底部襯墊承托減少水的阻力。很多氣墊船的速度都可以超過五十節(約92.59km/hr)。

按動力[編輯]

一艘大型三桅帆船
  • 人力船:通過人力使用槳、櫓、篙等產生動力。
  • 帆船:使用風力吹動帆產生動力。
  • 輪帆船:風力、發動機雙動力船。
  • 輪船:發動機動力船。
  • 駁船:無動力船。

設計考量[編輯]

水力靜力學[編輯]

氣墊登陸艇之類的船隻,可以在不排開液體的情形下產生浮力

船舶可以浮在水面上的原因有以下三種:

  • 大部份的船舶稱為排水型船舶(displacement vessel),船舶的重量因為被船殼排開英語displacement (fluid)的水產生的浮力所平衡。
  • 對於平底的船隻,例如水翼船,升力是因為船的速度變快,和水相對運動時其升力會增加,直到水翼航行狀態為止。
  • 氣墊船等非排水型船舶,船隻是因為船隻產生的高壓空氣(氣墊)支持其重量,因此可以和水面保持一定距離。

當船隻往上的力和往下的力相等時,船隻達到靜力平衡。若船隻再往下,吃水多一些,其重量不變,但其船殼排開水的重量變大了。當兩個力平衡時,船可以浮在水面上。甚至即使船上的貨物沒有平均擺放,船也不會前仰後傾或是傾斜。

船隻的穩定性一方面是考慮上述的靜力學英語Initial stability層面,當船受到外力移動、橫搖(rolling)及縱搖(pitching),以及有風和浪的影響時,也要考慮動力學英語Ship stability層面。穩定性不佳的船出現過大的橫搖及縱搖,最後會翻船英語Capsizing或沈船。

水力動力學[編輯]

漁船Dona Delfina

船在水中航行時,其前緣會受到水的阻力,阻力可以分為許多成份,主要的是水作用在船殼英語Hull (watercraft)的阻力及波阻力英語wave making resistance 。若降低了阻力,速度自然會提昇,需要降低濕潤表面,沒水部份船體也要改用產生水波振幅較小的外形。為了達到此一目的,高速的船舶一般會較細長,其附屬物較小或是較少。若定期的清理船殼上寄生的生物及藻類,也可以減少船的阻力,防污英語Biofouling油漆也可以減少船殼上的生物。像球狀船首等較先進的設計也可以減少波浪的阻力。

考慮波阻力的一個簡單方法是看船殼和其產生船波的關係。若船的速度比船波傳播的速度慢,船波會快速的在船的兩側消散。不過若船的速度和船波傳播的速度相等,船波能量增加的速度會比能量消散的速度快,因此船波振幅會增加。船必須從船波中穿過或是越過船波,其阻力會隨速度,以指數形式上昇。

船身極速英語hull speed可用以下方式計算:

\mbox{knots} \approx 1.34 \times \sqrt{L \mbox{ft}}

或是用以下的公制公式:

\mbox{knots} \approx 2.5 \times \sqrt{L \mbox{m}}

其中L為船在吃水線的長度,單位是英尺或是公尺。

當船隻的速度超過船身極速的94%,船會越過大部份的船首波,船身只由二個船首波的波峰支撐,略為穩定。當船隻的速度超過船身極速的134%,波長較船身長,船首波已無法再支撐船尾,因此船尾會下沈,船首會上昇。因此船身會開始要越過船本身產生的船首波,其阻力會快速增加。即使可以將排水型船舶運作在船身極速134%的速度,其油料的費用也會非常驚人。大部份的船舶會運作在遠小於上述程度的速度,約在船身極速的100%以下。

船沿著三個軸的移動及轉動:1. 垂蕩(heave), 2. 橫移(sway), 3. 縱移(surge), 4. 平擺(yaw), 5. 縱搖(pitch), 6. 橫搖(roll)

若是有足夠資金的大型計劃,會用船殼測試池來測試阻力,或是利用計算流體力學的方式進行計算。

船舶也會受到海浪湧浪的影響,天氣也會影響船舶。這些移動及轉動對乘客或是貨物而言都是不想要的,若可能的話需要加以控制。在一定程度上,橫搖是可以用壓載或是像鰭板穩定器英語Stabilizer (ship)等設備加以穩定。縱搖更難加以限制,若是船頭沈沒在波浪中(稱為打浪),可能會造成危險。有時,為了停止劇烈的橫搖或縱搖,船隻必須改變航向或是快速停止。

船隻穩定性的理論在21世紀的科學研究中已經有具有說服力的說明[10][11],可是有些船隻的穩定性因著分叉點記憶英語bifurcation memory的效應而快速下降。這類船隻包括有高機動性能的船隻、在穩態運動下設計為不穩定的飛機及受控海底車輛(在一些應用下需要上述的技術特點)。在設計船隻及其在關係情形下的控制時,需控制上述的因素。

浮力[編輯]

浮著的船會排開英語displacement (fluid)和本身重量相同的流體。船本身結構的密度可以比水重,只要船的結構中有夠大的空心部份即可。若船浮著,整艘船(包括貨物)的質量除以其在吃水線下的體積,結果會等於水的密度(1 kg/l)。若船上的重量再加重,吃水線下的體積要增加才能使重力和浮力平衡,因此船會再下沈一點點。

關聯項目[編輯]

參考文獻[編輯]

  1. ^ UNCTAD 2007, p. x and p. 32.
  2. ^ How Many Ships are there in the World?. Shipping Research and Finance. [4 May 2015]. 
  3. ^ "The Columbian Exchange". The University of North Carolina.
  4. ^ Cutler 1999, p. 620.
  5. ^ Cutler 1999, p. 611.
  6. ^ Chief of Naval Operations. The Saga of the Submarine: Early Years to the Beginning of Nuclear Power. United States Navy. 2001-03 [2008-10-03]. 
  7. ^ Roger Boyes, Alex Spence Published at 12:01AM, July 9, 2012. The Times Style Guide. Timesonline.co.uk. [2012-07-09]. 
  8. ^ George, Rose. All at Sea. Slate Magazine. 29 November 2010 [4 December 2010]. 
  9. ^ 例如: The Chicago Manual of Style, 15th edition, p. 356. 2003. ISBN 0-226-10403-6.
  10. ^ Feigin, M I. ru:Проявление эффектов бифуркационной памяти в поведении динамической системы [Manifestation of the bifurcation memory effect in behaviour of dynamic system]. Soros Educational Journal, journal. 2001, 7 (3): 121–127 (俄文). 
  11. ^ Feigin, M; Kagan, M. Emergencies as a manifestation of effect of bifurcation memory in controlled unstable systems. International Journal of Bifurcation and Chaos, journal. 2004, 14 (7): 2439–2447. doi:10.1142/S0218127404010746. ISSN 0218-1274. 

參考書目[編輯]

  • Cutler, Thomas J. The Bluejacket's Manual (Bluejacket's Manual, 22nd ed). Annapolis, Md: Naval Institute Press. 1999. ISBN 1-55750-065-7. 

外部連結[編輯]