本頁使用了標題或全文手工轉換

費曼圖

維基百科,自由的百科全書
(已重新導向自 費曼圖)
前往: 導覽搜尋
本圖中,電子正電子湮滅產生虛光子,而該虛光子生成夸克反夸克組,然後其中一個放射出一個膠子。(時間由左至右,一維空間由下至上)

費恩曼圖英語:Feynman diagram)是美國物理學家理察·費曼(即費恩曼)在處理量子場論時提出的一種形象化的方法,描述粒子之間的交互作用、直觀地表示粒子散射、反應和轉化等過程。使用費恩曼圖可以方便地計算出一個反應過程的躍遷機率

在費恩曼圖中,粒子用線表示,費米子一般用實線,光子用波浪線,玻色子用虛線,膠子用圈線。一線與另一線的連接點稱為頂點。費恩曼圖的橫軸一般為時間軸,向右為正,向左代表初態,向右代表末態。與時間方向相同的箭頭代表正費米子,與時間方向相反的箭頭表示反費米子

簡介[編輯]

兩個粒子的交互作用量由反應截面積所量化,其大小取決於它們的碰撞,該交互作用發生的機率尤其重要。如果該交互作用的強度不太大(即是能夠用微擾理論解決),這反應截面積(或更準確來說是對應的時間演變算子分布函數S矩陣)能夠用一系列的項(戴森級數)所表示,這些項能描述一段短時間所發生的故事,像以下的例子:

本圖中,K介子(由一上夸克與反奇夸克組成)在弱交互作用衰變成三個π介子,中間步驟有W玻色子膠子參與。
  • 兩個具有一定相對速度的粒子在自由地移動(由兩條向著大致方向的線表示)
  • 它們遇到對方(兩線連於第一點──頂點)
  • 它們在同一路徑上漫步(兩線合二為一)
  • 然後再度分開(第二個頂點)
  • 但它們發覺自己的速度已變,而且再也不和之前一樣(兩線從最後的頂點向上──有時樣式會因應粒子所經歷的轉變而有所不同)

這故事能夠以圖來表示,這一般來說要比記起對應戴森級數的數學公式要容易得多。這種圖被稱為費恩曼圖。它們在戴森級數迅速趨向極限時才有意義。由於它們能夠說簡易的故事,而且又跟早期的氣泡室實驗相似,所以費恩曼圖變得非常普及。

動機與歷史[編輯]

粒子物理學中,計算散射反應截面積的難題簡化成加起所有可能存在的居間態振幅(每一個對應攝動理論又稱戴森級數的一個項)。用費恩曼圖表示這些狀態以,比瞭解當年冗長計算容易得多。從該系統的基礎拉格朗日量能夠得出費恩曼法則,費恩曼就是用該法則表明如何計算圖中的振幅。每一條內線對應虛粒子的分布函數;每一個線相遇頂點給出一個因子和來去的兩線,該因子能夠從交互作用項的拉格朗日量中得出,而線則約束了能量動量自旋。費恩曼圖因此是出現在戴森級數每一個項的因子的符號寫法。

但是,作為微擾的展開式,費恩曼圖不能包涵非微擾效應。

除了它們在作為數學技巧的價值外,費恩曼圖為粒子的交互作用提供了深入的科學理解。粒子會在每一個可能的方式下交互作用:實際上,居間的虛粒子超越光速是允許的。(這是基於測不準原理,因深奧的理由而不違反相對論;事實上,超越光速對保留相對性時空的偶然性有幫助。)每一個終態的機率然後就從所有如此的機率中得出。這跟量子力學的泛函積分表述有密切關係,該表述(路徑積分)也是由費曼發明的。

如此計算如果在缺少經驗的情況下使用,通常會得出圖的振幅為無窮大,這個答案在物理理論中是不能接受的。問題在於粒子自身的交互作用被錯誤地忽視了。重整化的技巧(是由費曼、施溫格朝永所開發的)彌補了這個效應並消除了麻煩的無窮大項。經過這樣的重整化後,用費曼圖做的計算通常能與實驗結果準確地吻合。

費恩曼圖及路徑積分法亦被應用於統計力學中。

其他名稱[編輯]

默里·蓋爾曼一直將費恩曼圖稱為斯蒂克爾堡圖(Stückelberg diagrams),因為瑞士物理學家厄恩斯特·斯蒂克爾堡(Ernst Stückelberg)發明了一個相近的圖[1]

歷史上他們也曾被叫成費恩曼-戴森圖戴森圖[2]

例子[編輯]

Beta Negative Decay.svg

β衰變[編輯]

右圖為β衰變的費曼圖。圖中的直線代表費米子,而波浪線則代表虛玻色子。在本例中,圖被設定在流形時空中,y坐標為時間而x坐標為空間;x坐標亦代表了某些交互作用(考慮碰撞)的「地點」。由於時間朝著y軸方向,所以微中子是向著時間方向行進的;但費米子可以被視為其向時間後方移動的反粒子,因為數學上這兩個概念沒有分別。這適用於所有粒子和反粒子。

量子電動力學[編輯]

量子電動力學中,有兩個場標記,叫「電子」和「光子」。「電子」有一定方向而「光子」無固定方向。當中只有一種交互作用,用「γ」標記,其三度分別為「光子」、「電子」「頭」和「電子」「尾」。

註釋[編輯]

  1. ^ http://www.theatlantic.com/issues/2000/07/johnson.htm
  2. '^ Gribbin, John and Mary. Richard Feynman: A Life in Science, Penguin-Putnam, 1997 Ch 5.

參考資料[編輯]

  • Gerardus 't Hooft, Martinus Veltman, Diagrammar, CERN Yellow Report 1973, online
  • David Kaiser, Drawing Theories Apart: The Dispersion of Feynman Diagrams in Postwar Physics, Chicago: University of Chicago Press, 2005. ISBN 0-226-42266-6
  • Martinus Veltman, Diagrammatica: The Path to Feynman Diagrams, Cambridge Lecture Notes in Physics, ISBN 0-521-45692-4 (expanded, updated version of above)

外部連結[編輯]