本頁使用了標題或全文手工轉換

阻尼

維基百科,自由的百科全書
前往: 導覽搜尋
一個有阻尼的彈簧振子振動示意圖。從振動形式看,這是一個次阻尼體系。

阻尼英語:damping)是指任何振動系統在振動中,由於外界作用(如流體阻力摩擦力等)和/或系統本身固有的原因引起的振動幅度逐漸下降的特性,以及此一特性的量化表征。

在實際振動中,由於摩擦力總是存在的,所以振動系統最初所獲得的能量,在振動過程中因阻力不斷對系統做負功,使得系統的能量不斷減少,振動的強度逐漸減弱,振幅也就越來越小,以至於最後的停止振動,像這樣的因系統的力學能,由於摩擦及轉化成內能逐漸減少,振幅隨時間而減弱振動,稱為阻尼振動。

  • 當阻尼較強時,阻尼振子幾乎沒有振動,振幅逐漸減小,達到穩定平衡,稱為過阻尼。
  • 當阻尼較弱時,阻尼振子必須緩慢的經由多次振動逐漸把振幅減小,最後回到平衡位置,因此達成穩定平衡的時間較久,稱為次阻尼。
  • 另一種情形是阻尼振子以最平穩的速度,最短的時間達到穩定平衡,稱為臨界阻尼。

阻尼模型[編輯]

物理學工程學上,阻尼的力學模型一般是一個與振動速度大小成正比,與振動速度方向相反的,該模型稱為粘性(或黏性阻尼模型,是工程中應用最廣泛的阻尼模型。粘性阻尼模型能較好地模擬空氣流體對振動的阻礙作用。本條目以下也主要討論粘性阻尼模型。然而必須指出的是,自然界中還存在很多完全不滿足上述模型的阻尼機制,譬如在具有恆定摩擦係數的桌面上振動的彈簧振子,其受到的阻尼力就僅與自身重量和摩擦係數有關,而與速度無關。

除簡單的力學振動阻尼外,阻尼的具體形式還包括電磁阻尼、介質阻尼、結構阻尼,等等。儘管科學界目前已經提出了許多種阻尼的數學模型,但實際系統中阻尼的物理本質仍極難確定。下面僅以力學上的粘性阻尼模型為例,作一簡單的說明。

粘性阻尼可表示為以下式子:

其中F表示阻尼力,v表示振子的運動速度(向量),c 是表示阻尼大小的常數,稱為阻尼係數國際單位制單位為牛頓·秒/米。

上述關係類比於電學中定義電阻歐姆定律

在日常生活中阻尼的例子隨處可見,一陣大風過後搖晃的樹會慢慢停下,用手撥一下吉他後聲音會越來越小,等等。阻尼現象是自然界中最為普遍的現象之一。

例子:彈簧阻尼器振子[編輯]

彈簧阻尼器振子示意圖。圖中B 表示阻尼係數(通常用c 表示),F 表示作用在質量塊上的外力。在以下的分析中假設F = 0。

理想的彈簧阻尼器振子系統如右圖所示。分析其受力分別有:

  • 彈性力k 為彈簧的勁度係數x 為振子偏離平衡位置的位移):
  • 阻尼力c 為阻尼係數,v 為振子速度):

假設振子不再受到其他外力的作用,於是可利用牛頓第二定律寫出系統的振動方程式:

其中a加速度

運動微分方程式[編輯]

上面得到的系統振動方程式可寫成如下形式,問題歸結為求解位移x 關於時間t 函數的二階常微分方程式:

將方程式改寫成下面的形式:

然後為求解以上的方程式,定義兩個新參量:

上面定義的第一個參量,ωn,稱為系統的(無阻尼狀態下的)固有頻率。 第二個參量,ζ,稱為阻尼比。根據定義,固有頻率具有角速度因次,而阻尼比為無因次參量。

微分方程式化為:

根據經驗,假設方程式解的形式為

其中參數一般為複數

將假設解的形式代入振動微分方程式,得到關於γ的特徵方程式

解得γ為:

系統行為[編輯]

次阻尼、臨界阻尼和過阻尼體系的典型位移-時間曲線

系統的行為由上小結定義的兩個參量——固有頻率ωn和阻尼比ζ——所決定。特別地,上小節最後關於二次方程式是具有一對互異實數根、一對重實數根還是一對共軛虛數根,決定了系統的定性行為。

臨界阻尼[編輯]

時,的解為一對重實根,此時系統的阻尼形式稱為臨界阻尼。現實生活中,許多大樓內房間或衛生間的門上在裝備自動關門的扭轉彈簧的同時,都相應地裝有阻尼鉸鏈,使得門的阻尼接近臨界阻尼,這樣人們關門或門被風吹動時就不會造成太大的聲響。

過阻尼[編輯]

時,的解為一對互異實根,此時系統的阻尼形式稱為過阻尼。當自動門上安裝的阻尼鉸鏈使門的阻尼達到過阻尼時,自動關門需要更長的時間。如記憶枕。

次阻尼[編輯]

時,的解為一對共軛虛根,此時系統的阻尼形式稱為次阻尼。在次阻尼的情況下,系統將以圓頻率相對平衡位置作往復振動。

方程式的解[編輯]

  • 對於次阻尼體系,運動方程式的解可寫成:

其中

是有阻尼作用下系統的固有頻率,A 和φ 由系統的初始條件(包括振子的初始位置和初始速度)所決定。該振動解代表的是一種振幅按指數規律衰減的簡諧振動,稱為衰減振動(見上圖中 的位移-時間曲線所示)。

  • 對於臨界阻尼體系,運動方程式的解具有形式

其中AB 由初始條件所決定。該振動解表征的是一種按指數規律衰減的非周期運動。

  • 對於過阻尼體系,定義

則運動微分方程式的通解可以寫為:

其中AB 同樣取決於初始條件,cosh 和 sinh 為雙曲函數。該振動解表征的是一種同樣按指數規律衰減的非周期蠕動。從上面的位移-時間曲線圖中可以看出,過阻尼狀態比臨界阻尼狀態蠕動衰減得更慢。

參看[編輯]

參考資料[編輯]

  • 倪振華編著,《振動力學》,西安交通大學出版社,西安,1990,ISBN 7-5605-0212-1/O·44
  • R. W. Clough, J. Penzien, Dynamics of Structures, Mc-Graw Hill Inc., New York, 1975, ISBN 0-07-011392-0。(中文版:R.W.克拉夫,J.彭津著,王光遠等譯,《結構動力學》,科學出版社,北京,1981)

外部連結[編輯]