跳至內容

馬克士威-波茲曼分布

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書

馬克士威-波茲曼分布(英語:Maxwell–Boltzmann distribution)是一個描述一定溫度下微觀粒子運動速度的機率分布,在物理學化學中有應用。最常見的應用是統計力學的領域。任何(宏觀)物理系統的溫度都是組成該系統的分子原子運動的結果。這些粒子有一個不同速度的範圍,而任何單個粒子的速度都因與其它粒子的碰撞而不斷變化。然而,對於大量粒子來說,處於一個特定的速度範圍的粒子所占的比例卻幾乎不變,如果系統處於或接近處於平衡。馬克士威-波茲曼分布具體說明了這個比例,對於任何速度範圍,作為系統的溫度的函數。它以詹姆斯·馬克士威路德維希·波茲曼命名。

這個分布可以視為一個三維向量的大小,它的分量是獨立和常態分布的,其期望值為0,標準差。如果的分布為,那麼

就呈馬克士威-波茲曼分布,其參數為

馬克士威-波茲曼分布的物理應用

[編輯]

馬克士威-波茲曼分布形成了分子運動論的基礎,它解釋了許多基本的氣體性質,包括壓力擴散。馬克士威-波茲曼分布通常指氣體中分子的速率的分布,但它還可以指分子的速度、動量,以及動量的大小的分布,每一個都有不同的機率分布函數,而它們都是聯繫在一起的。

馬克士威-波茲曼分布可以用統計力學來推導(參見馬克士威-波茲曼統計)。它對應於由大量不交互作用的粒子所組成、以碰撞為主的系統中最有可能的速率分布,其中量子效應可以忽略。由於氣體中分子的交互作用一般都是相當小的,因此馬克士威-波茲曼分布提供了氣體狀態的非常好的近似。

在許多情況下(例如非彈性碰撞),這些條件不適用。例如,在電離層和空間電漿的物理學中,特別對電子而言,重組和碰撞激發(也就是輻射過程)是重要的。如果在這個情況下應用馬克士威-波茲曼分布,就會得到錯誤的結果。但如果系統在恆溫槽中且處於熱力學平衡,即使發生非彈性碰撞,其以的形式失去的動能仍然可由恆溫槽再以熱的形式補償回來,使得馬克士威-波茲曼分布依然適用。另外一個不適用馬克士威-波茲曼分布的情況,就是當氣體的量子熱波長英語Thermal de Broglie wavelength與粒子之間的距離相比不夠小時,由於有顯著的量子效應也不能使用馬克士威-波茲曼分布。另外,由於它是基於非相對論的假設,因此馬克士威-波茲曼分布不能做出分子的速度大於光速的機率為零的預言。

推導

[編輯]

馬克士威最初的推導假設了三個方向上的表現都相同,但後來在波茲曼的一個推導中利用分子運動論去掉了這個假設。現在,馬克士威-波茲曼分布可以輕易地從能量的波茲曼分布推出:

其中Ni是平衡溫度T時,處於狀態 i 的粒子數目,具有能量 Ei 和簡併度 giN 是系統中的總粒子數目,k波茲曼常數。(注意有時在上面的方程式中不寫出簡併度gi。在這個情況下,指標i將指定了一個單態,而不是具有相同能量Eigi的多重態。)由於速度和速率與能量有關,因此方程式1可以用來推出氣體的溫度和分子的速度之間的關係。這個方程式中的分母稱為正則配分函數

動量向量的分布

[編輯]

下列所述的推導,與詹姆斯·克拉克·馬克士威描述的推導和後來由路德維希·波茲曼描述的具有較少假設的推導都有很大不同。它與波茲曼在1877年的探討比較接近。

對於「理想氣體」(由基態的非交互作用原子所組成)的情況,所有能量都是動能的形式。宏觀粒子的動能與動量的關係為:

其中p2是動量向量p = [pxpypz]的平方。因此,我們可以把方程式1寫成:

其中Z配分函數,對應於方程式1中的分母。在這裡,m是氣體的分子質量,T是熱力學溫度,k波茲曼常數。這個Ni/N的分布與找到具有這些動量分量值的分子的機率密度函數fp正比,因此:

歸一化常數c可以通過認識到分子具有任何動量的機率必須為1來決定。因此,方程式4在所有pxpypz上的積分必須是1。

可以證明:

把方程式5代入方程式4,得出:

可以看出,這個分布是三個獨立、呈常態分布的變量的乘積,其方差為。此外,可以看出動量的大小呈馬克士威-波茲曼分布,其中

能量的分布

[編輯]

利用p² = 2mE,以及動量的大小的分布函數(參見以下速率分布的章節),我們便得出能量的分布:

由於能量與三個呈常態分布的動量分量的平方和成正比,因此這個分布是具有三個自由度的卡方分布

其中

馬克士威-波茲曼分布還可以通過把氣體視為量子氣體來獲得。

速度向量的分布

[編輯]

認識到速度的機率密度函數fv與動量的機率密度函數成正比:

並利用p = mv,我們便得到:

這就是馬克士威-波茲曼速度分布。在速度相空間vxvyvz)的一塊無窮小區域[dvxdvydvz]內找到具有特定速度v = [vxvyvz]的氣體分子的機率為

像動量一樣,這個分布是三個獨立、呈常態分布的變量的乘積,但方差為。還可以看出,對於速度向量[vxvyvz],馬克士威-波茲曼速度分布是三個方向上的分布的乘積:

其中一個方向上的分布為:

這個分布具有常態分布的形式,其方差為。正如所預料的,對於靜止的氣體,在任何方向上的平均速度都是零。

速率的分布

[編輯]
一些惰性氣體在298.15 K(25 °C)的溫度下的速率分布函數。y軸的單位為s/m,因此任何一段曲線下的面積(它表示速度處於那個範圍的機率)都是無因次的。

通常,我們更感興趣於分子的速率,而不是它們的速度分量。馬克士威-波茲曼速率分布為:

其中速率v定義為:

注意:在這個方程式中,f(v)的單位是機率每速率,或僅僅是速率的倒數,如右圖那樣。

由於速率是三個獨立、呈常態分布的速度分量的平方之和的平方根,因此這個分布是馬克士威-波茲曼分布。

我們通常更感興趣於粒子的平均速率,而不是它們的實際分布。平均速率、最概然速率(眾數),以及均方根速率可以從馬克士威-波茲曼分布的性質獲得。

典型的速率

[編輯]

雖然以上的方程式給出了速率的分布,或具有特定速率的分子的比例,我們通常更感興趣於粒子的平均速率,而不是它們的實際分布。

最概然速率(最大可能速率)

[編輯]

最概然速率vp,是系統中任何分子最有可能具有的速率,對應於f(v)的最大值或眾數。要把它求出來,我們計算df/dv,依極值法,將其設為零,然後對v求解:

得出:

其中R氣體常數M = NAm是物質的莫耳質量

對於室溫(300K)下的氮氣(空氣的主要成分),可得m/s。

平均速率

[編輯]

平均速率是速率分布的數學期望

近似得:

方均根速率

[編輯]

方均根速率vrms是速率的平方的平均值的平方根:

三種典型速率的關係

[編輯]

它們具有以下的關係:

[1]

非統計的推導方式

[編輯]

馬克士威-波茲曼分布也可直接由氣體速率均向性以及分離變數的假設以微分方程式計算得到指數函數之形式,微分方程式解的未定數項則由粒子總數以及方均根速率和波茲曼常數的氣體動力論關係兩者聯立得解.詳見外部連結.

相對論氣體的速率分布

[編輯]
電子氣體在不同溫度下的Maxwell-Juttner速率分布 (相對論馬克士威分布)

當氣體越來越熱時,kT趨於或超過mc2,這個相對論馬克士威氣體的速率分布由Maxwell-Juttner分布給出:[2]:

其中 是第二類變形貝索函數

參考文獻

[編輯]
  1. ^ 秦允豪. 热学. 高等教育出版社. : 65頁. ISBN 978-7-04-013790-3. 
  2. ^ Synge, J.L., The relativistic gas, Noord-Holland, 1957

外部連結

[編輯]

參見

[編輯]