祝融型小行星

维基百科,自由的百科全书
(重定向自水內小行星
該區域由橙色區域表示,與水星金星地球的軌道相比,可能存在祝融星。

祝融型小行星是在水星軌道內的一個動態穩定區內圍繞太陽運行的假想小行星種群。它們是以假想行星祝融星命名的,該行星是根據水星軌道的不規則性提出的,但後來發現可以用廣義相對論來解釋。到目前為止,還沒有發現火祝融星,也不清楚是否存在。

如果它們真的存在,但因為它們非常小,而且靠近明亮的太陽,即使是最大的祝融星還是很不容易被探測到。由於它們靠近太陽,只能在黃昏或日食期間進行地面蒐索。任何祝融型小行星的直徑都必須在大約100米(330英尺)到6公里(3.7英里)之間,並且可能位於太陽和水星之間引力穩定區外緣附近的近似圓形軌道上。這些小行星應該與阿提拉小行星區分開來,後者可能有位於水星軌道內的近日點,但其遠日點延伸至金星軌道或地球軌道內。因為它們穿過水星軌道,所以這些天體不屬於祝融型小行星。

如果發現這些祝融型小型星,可能會為科學家提供行星形成第一階段的資料,以及對太陽系早期普遍存在的條件能更深入瞭解。儘管太陽系中其它引力穩定的區域都被發現含有物體,但在太陽系發展的早期階段,非引力(如亞爾科夫斯基效應)或行星遷移的影響可能已經耗盡了該區域可能存在的任何小行星。

歷史與觀察[编辑]

幾個世紀以來,人們一直在假設和尋找水星軌道內部的天體。德國天文學家克里斯多福·沙伊納(英語:Christoph Scheiner)認為他在1611年看到過小天體從太陽前面經過,但後來發現這些天體是太陽黑子[1]。19世紀50年代,于爾班·勒威耶對水星的軌道進行了詳細的計算,發現水星的近日點進動英语Apsidal precession與預測值存在微小差異。他推測,水星軌道內一顆小行星或小行星環的引力影響將能解釋這種偏差。不久之後,一位名叫埃德蒙德·萊斯卡博英语Edmond Modeste Lescarbault的業餘天文學家聲稱看到了勒威耶提出的行星太陽。這顆新行星很快被命名為祝融星,但之後再也沒有出現過。1915年愛因斯坦廣義相對論解釋了水星軌道的異常行為。祝融型小行星的名字取自這顆假想的行星[2]。萊斯卡博看到的可能是另一個太陽黑子[3]

日全食提供了一個從地面尋找祝融型小行星的機會。

如果祝融星存在,由於附近太陽的强烈眩光,它們將很難被探測到[4],地面蒐索只能在黃昏或日全食期間進行[5]。20世紀初,在日全食期間進行了幾次蒐索[6],沒有發現任何祝融型小行星,而日全食期間的觀測仍然是一種常見的蒐索方法[7]。傳統的望遠鏡不能用來尋找它們,因為附近的太陽可能會損壞它們的光學系統[8]

1998年,天文學家分析了SOHO衛星的大角度和光譜日冕儀英语Large Angle and Spectrometric Coronagraph儀器的數據;該儀器是一套三個日冕儀。當年1月至5月的數據顯示沒有任何亮度超過星等7等的祝融型小行星。假設小行星的反照率與水星相似,這對應於大約60公里(37英里)的直徑。特別是,根據尺度相對論英语Laurent Nottale的理論預測,在0.18 AU的距離處,大的小行星被排除在外[9]

後來探測祝融型小行星的嘗試涉及到將天文設備置於地球大氣層的干擾之上,達到天空比黃昏時從地面觀測更暗、更清晰的程度[10]。2000年,行星科學家阿蘭·斯特恩(英語:Alan Stern)使用U-2間諜飛機對祝融型小行星帶進行了調查。這些飛行是於黃昏時分在21,300米(69,900英尺)的高度進行的[11]。2002年,他和B612基金會丹·杜爾達(英語:Dan Durda)在一架F-18戰鬥機進行了類似的觀測。他們以15,000米(49,000英尺)的高度在莫哈維沙漠上空進行了三次飛行,並用機載的西南通用成像系統(SWUIS-A)進行了觀測[12]

即使在這些高度,大氣仍然存在,可能會干擾對祝融型小行星的搜索。2004年,為了在地球大氣層上方安裝相機,曾嘗試進行一次次軌道太空飛行。1月16日,攜帶一架名為VulCam强大相機的一枚黑布蘭特火箭英语Black Brant (rocket)火箭從新墨西哥州白沙發射[13]。在十分鐘的飛行中[4],火箭抵達了274,000米(899,000英尺)的高度[13],並拍攝了超過 50,000 張圖像。雖然存在技術問題,但沒有一張圖像顯示祝融型小行星[4]

對美國國家航空暨太空總署的兩架日地關係天文台太空船數據的蒐索,也未能探測到任何祝融型小行星[14]。是否有直徑大於5.7公里(3.5英里)的祝融型小行星值得懷疑[14]

信使號無人太空飛行器拍攝了一些祝融型小行星帶外部區域的影像; 然而,因為它的儀器必須始終指向遠離太陽的地方以避免損壞,所以它的機會是有限的[15][16]。在2015年撞擊水星表面結束任務之前,該太空船始終未能提供有關祝融型小行星的實質性證據。

2021年8月13日,一顆小行星2021 PH27被發現,其近日點位於水星軌道內。它與太陽的最近距離為0.1331天文單位,不到水星近日點0.300799天文單位的一半。這使其最近的位置完全位於假設的祝融型小行星帶內。

軌道[编辑]

重要性[编辑]

祝融型小行星,做為一種全新類型的天體,必然會引起興趣和有它們自己的正當性[17],但無論是否發現它們的存在,都可以對洞察太陽系的形成與演化產生影響。如果它們存在,它們可能包含行星形成早期階段殘留下來的材料[12],並且有助於確定類地行星,特別是水星,形成的條件[17]。特別是,如果祝融型小行星是存在或是曾經存在過,它們將代表只影響到水星的另外一群撞擊物[16],使這顆行星的表面顯得比它實際的更老。如果發現祝融型小行星不存在,這將使行星的形成受到不同制約[17],並且建議在內太陽系進行其它的過程,像是行星遷徙進行清除這些區域的工作[18]

相關條目[编辑]

註解[编辑]

  1. ^ Drobyshevskii, E. M. Impact Avalanche Ejection of Silicates from Mercury and the Evolution of the Mercury / Venus System. Soviet Astr. 1992, 36 (4): 436–443. Bibcode:1992SvA....36..436D. 
  2. ^ Standage, Tom. The Neptune File. Harmondsworth, Middlesex, England: Allen Lane, The Penguin Press. 2000: 144–149. ISBN 0-7139-9472-X. 
  3. ^ Miller, Ron. Extrasolar Planets. Twenty-First Century Books. 2002: 14. ISBN 978-0-7613-2354-9. 
  4. ^ 4.0 4.1 4.2 Vulcanoids. The Planetary Society. [2008-12-25]. (原始内容存档于2009-01-08). 
  5. ^ 引用错误:没有为名为Roach的参考文献提供内容
  6. ^ Campbell, W.W.; Trumpler, R. Search for Intramercurial Objects. Publications of the Astronomical Society of the Pacific. 1923, 35 (206): 214. Bibcode:1923PASP...35..214C. S2CID 122872992. doi:10.1086/123310. 
  7. ^ 引用错误:没有为名为VulcFAQ的参考文献提供内容
  8. ^ 引用错误:没有为名为Britt的参考文献提供内容
  9. ^ 引用错误:没有为名为Schumacher的参考文献提供内容
  10. ^ 引用错误:没有为名为Whitehouse的参考文献提供内容
  11. ^ David, Leonard. Astronomers Eye 'Twilight Zone' Search for Vulcanoids. Space.com. 2000 [2008-12-25]. (原始内容存档于July 24, 2008). 
  12. ^ 12.0 12.1 NASA Dryden, Southwest Research Institute Search for Vulcanoids. NASA. 2002-02-20 [2008-12-25]. (原始内容存档于2019-05-03). 
  13. ^ 13.0 13.1 引用错误:没有为名为Alexander的参考文献提供内容
  14. ^ 14.0 14.1 引用错误:没有为名为Steffl2013的参考文献提供内容
  15. ^ Choi, Charles Q. The Enduring Mysteries of Mercury. Space.com. 2008 [2008-12-25]. 
  16. ^ 16.0 16.1 Chapman, C.R.; Merline, W.J., Solomon, S.C., Head, J.W. III, Strom, R.G. First MESSENGER Insights Concerning the Early Cratering History of Mercury (pdf). Workshop on the Early Solar System Impact Bombardment, held November 19-20, 2008 in Houston, Texas (Lunar and Planetary Institute). 2008: 25-26 [2008-12-26]. Bibcode:2008LPICo1439...25C. (原始内容存档 (PDF)于2021-01-18). 
  17. ^ 17.0 17.1 17.2 Campins, H.; Davis, D. R.; Weidenschilling, S. J.; Magee, M. Searching for Vulcanoids. Completing the Inventory of the Solar System, Astronomical Society of the Pacific Conference Proceedings. 1996, 107: 85–96. Bibcode:1996ASPC..107...85C. 
  18. ^ Evans, N. Wyn; Tabachnik, Serge. Possible long-lived asteroid belts in the inner Solar System. Nature. 1999-05, 399 (6731): 41-43 [2022-10-19]. Bibcode:1999Natur.399...41E. ISSN 0028-0836. arXiv:astro-ph/9905067可免费查阅. doi:10.1038/19919. (原始内容存档于2022-10-22) (英语).