模板:雌激素酯和醚對雌激素受體的親和力和雌激素效價強度

維基百科,自由的百科全書
雌激素酯雌激素受體親和力和雌激素效價強度
雌激素 Other names RBA (%)a REP (%)b
ER ERα ERβ
雌二醇 E2 100 100 100
3-硫酸雌二醇 E2S、E2-3S ? 0.02 0.04
3-葡糖苷酸雌三醇 E2-3G ? 0.02 0.09
17β-葡糖苷酸雌三醇 E2-17G ? 0.002 0.0002
苯甲酸雌二醇 EB、3-苯甲酸雌二醇 10 1.1 0.52
17β-乙酸雌二醇 E2-17A 31–45 24 ?
二乙酸雌二醇 EDA、3,17β-二乙酸雌二醇 ? 0.79 ?
丙酸雌二醇 EP、17β-丙酸雌二醇 19–26 2.6 ?
戊酸雌二醇 EV、17β-戊酸雌二醇 2–11 0.04–21 ?
環戊丙酸雌二醇 EC、17β-環戊丙酸雌二醇 ?c 4.0 ?
棕櫚酸雌二醇 17β-棕櫚酸雌二醇 0 ? ?
硬脂酸雌二醇 17β-硬脂酸雌二醇 0 ? ?
雌酮 E1、17-酮雌二醇 11 5.3–38 14
硫酸雌酮 E1S、3-硫酸雌酮 2 0.004 0.002
葡糖苷酸雌酮 E1G、3-葡糖苷酸雌酮 ? <0.001 0.0006
乙炔雌二醇 EE、17α-乙炔雌二醇 100 17–150 129
美雌醇 EE 3-甲醚 1 1.3–8.2 0.16
炔雌醚 EE 3-環戊醚 ? 0.37 ?
腳本:

a = 相對結合親和力(RBA)是通過標記的雌二醇從齧齒動物子宮胞質溶膠的雌激素受體(ER)的體外置換來確定的。在這些系統中,雌激素酯會不同程度地水解成雌激素(較短的酯鏈長度 -> 較高的水解速率),並且當水解被阻止時,酯的ER RBA會大大降低。[1][2]
b = 相對雌激素效力(REP)是根據半數最大有效濃度(EC50)計算得出的,該濃度是通過在表達人ERα和人ERβ的酵母中進行體外β-半乳糖苷酶(β-gal)和綠色螢光蛋白(GFP)生產測定法確定的。哺乳動物細胞和酵母都具有水解雌激素酯的能力。[3]

c = 环戊丙酸雌二醇对ER的亲和力与戊酸雌二醇和苯甲酸雌二醇相似 (数据).[4] Sources: 亲和力: [1][2][5][6][7] 雌激素效价强度: [8][9][10][11] 额外的: [4][3][12]
文件圖示 模板文件

參見

參考資料

  1. ^ 1.0 1.1 Janocko L, Larner JM, Hochberg RB. The interaction of C-17 esters of estradiol with the estrogen receptor. Endocrinology. April 1984, 114 (4): 1180–6. PMID 6705734. doi:10.1210/endo-114-4-1180. 
  2. ^ 2.0 2.1 Abul-Hajj YJ, Nurieddin A. Significance of lipoidal estradiol in human mammary tumors. Steroids. October 1983, 42 (4): 417–26. PMID 6679946. doi:10.1016/0039-128x(83)90140-x. 
  3. ^ 3.0 3.1 Hoogenboom LA, de Haan L, Hooijerink D, Bor G, Murk AJ, Brouwer A. Estrogenic activity of estradiol and its metabolites in the ER-CALUX assay with human T47D breast cells. APMIS. February 2001, 109 (2): 101–7. PMID 11398990. doi:10.1034/j.1600-0463.2001.d01-110.x. 
  4. ^ 4.0 4.1 Dubey RK, Jackson EK, Gillespie DG, Zacharia LC, Imthurn B, Keller PJ. Clinically used estrogens differentially inhibit human aortic smooth muscle cell growth and mitogen-activated protein kinase activity. Arterioscler. Thromb. Vasc. Biol. April 2000, 20 (4): 964–72. PMID 10764660. doi:10.1161/01.atv.20.4.964. 
  5. ^ Kuhl H. Pharmacokinetics of oestrogens and progestogens. Maturitas. September 1990, 12 (3): 171–97. PMID 2170822. doi:10.1016/0378-5122(90)90003-o. 
  6. ^ Kuhl, Herbert; Taubert, Hans-Dieter. Das Klimakterium – Pathophysiologie, Klinik, Therapie [The Climacteric – Pathophysiology, Clinic, Therapy]. Stuttgart, Germany: Thieme Verlag. 1987: 122. ISBN 978-3137008019 (德語). 
  7. ^ Matthews J, Celius T, Halgren R, Zacharewski T. Differential estrogen receptor binding of estrogenic substances: a species comparison. J. Steroid Biochem. Mol. Biol. November 2000, 74 (4): 223–34. PMID 11162928. doi:10.1016/s0960-0760(00)00126-6. 
  8. ^ Bovee TF, Helsdingen RJ, Rietjens IM, Keijer J, Hoogenboom RL. Rapid yeast estrogen bioassays stably expressing human estrogen receptors alpha and beta, and green fluorescent protein: a comparison of different compounds with both receptor types. J. Steroid Biochem. Mol. Biol. July 2004, 91 (3): 99–109. PMID 15276617. doi:10.1016/j.jsbmb.2004.03.118. 
  9. ^ Mu Y, Peng S, Zhang A, Wang L. Role of pocket flexibility in the modulation of estrogen receptor alpha by key residue arginine 394. Environ. Toxicol. Chem. February 2011, 30 (2): 330–6. PMID 21038436. doi:10.1002/etc.389. 
  10. ^ Yang R, Li N, Ma M, Wang Z. Combined effects of estrogenic chemicals with the same mode of action using an estrogen receptor binding bioassay. Environ. Toxicol. Pharmacol. November 2014, 38 (3): 829–37. PMID 25461542. doi:10.1016/j.etap.2014.10.001. 
  11. ^ Luo J, Lei B, Ma M, Zha J, Wang Z. Identification of estrogen receptor agonists in sediments from Wenyu River, Beijing, China. Water Res. July 2011, 45 (13): 3908–14. PMID 21621810. doi:10.1016/j.watres.2011.04.045. 
  12. ^ Rutishauser BV, Pesonen M, Escher BI, Ackermann GE, Aerni HR, Suter MJ, Eggen RI. Comparative analysis of estrogenic activity in sewage treatment plant effluents involving three in vitro assays and chemical analysis of steroids. Environ. Toxicol. Chem. April 2004, 23 (4): 857–64. PMID 15095880. doi:10.1897/03-286.