嵌合抗原受體T細胞:修订间差异
BigDaddy0131(留言 | 贡献) 小无编辑摘要 |
BigDaddy0131(留言 | 贡献) 无编辑摘要 |
||
第4行: | 第4行: | ||
'''嵌合抗原受体T细胞'''(英文:'''chimeric antigen receptor T cells''', 缩写:'''CAR T cells'''),是一种通过[[基因改造]]从而获得靶向特定抗原能力的[[T细胞]]。这些细胞之所谓”嵌合",是因为该细胞的[[受体 (生物化学)|受体]]集识别[[抗原]]功能与T细胞活化功能于一体。 |
'''嵌合抗原受体T细胞'''(英文:'''chimeric antigen receptor T cells''', 缩写:'''CAR T cells'''),是一种通过[[基因改造]]从而获得靶向特定抗原能力的[[T细胞]]。这些细胞之所谓”嵌合",是因为该细胞的[[受体 (生物化学)|受体]]集识别[[抗原]]功能与T细胞活化功能于一体。 |
||
嵌合抗原受体T[[细胞疗法]] |
该细胞通常被用于嵌合抗原受体T[[细胞疗法]](又名嵌合抗原受体T免疫疗法),即通过改造T细胞从而使其可以识别并有效地摧毁癌细胞来治疗癌症。科学家们会先从人体内提取T细胞,通过基因改造使其拥有嵌合抗原受体,并最终将其输入患者体内以攻击他们的肿瘤<ref name="newsweek">{{cite web | url = https://www.nbcnews.com/health/health-news/new-gene-therapy-cancer-offers-hope-those-no-options-left-n741326 | title = New Gene Therapy for Cancer Offers Hope to Those With No Options Left | first = Maggie | last = Fox | date = July 12, 2017 | work = NBC News | accessdate = 2019-05-03 | archive-date = 2019-05-23 | archive-url = https://web.archive.org/web/20190523034731/https://www.nbcnews.com/health/health-news/new-gene-therapy-cancer-offers-hope-those-no-options-left-n741326 | dead-url = no }}</ref>。 |
||
在嵌合抗原受体T细胞疗法中,原始的T细胞可以来源于患者本人(自体)或他人(异体)的血液。从人体中分离T细胞后,科学家们会以经过改造的慢病毒为载体对其进行基因改造,从而使其表达特定的嵌合抗原受体。该通过改造的受体则只会针对肿瘤细胞表面的抗原而无视健康的细胞,从而保证安全性<ref>{{cite journal | vauthors = Srivastava S, Riddell SR | title = Engineering CAR-T cells: Design concepts | journal = Trends in Immunology | volume = 36 | issue = 8 | pages = 494–502 | date = August 2015 | pmid = 26169254 | pmc = 4746114 | doi = 10.1016/j.it.2015.06.004 }}</ref>。 |
在嵌合抗原受体T细胞疗法中,原始的T细胞可以来源于患者本人(自体)或他人(异体)的血液。从人体中分离T细胞后,科学家们会以经过改造的慢病毒为载体对其进行基因改造,从而使其表达特定的嵌合抗原受体。该通过改造的受体则只会针对肿瘤细胞表面的抗原而无视健康的细胞,从而保证安全性<ref>{{cite journal | vauthors = Srivastava S, Riddell SR | title = Engineering CAR-T cells: Design concepts | journal = Trends in Immunology | volume = 36 | issue = 8 | pages = 494–502 | date = August 2015 | pmid = 26169254 | pmc = 4746114 | doi = 10.1016/j.it.2015.06.004 }}</ref>。 |
||
第24行: | 第24行: | ||
在21世纪初,科学家向第一代嵌合抗原受体T细胞的CD3ζ细胞内区域添加了如CD28或4-1BB的共刺激域,并称其为第二代嵌合抗原受体T细胞。该构造在临床前模型中表现出了更好的持久性以及清除肿瘤的效果<ref>{{cite journal | vauthors = Sadelain M, Rivière I, Brentjens R | title = Targeting tumours with genetically enhanced T lymphocytes | journal = Nature Reviews. Cancer | volume = 3 | issue = 1 | pages = 35–45 | date = January 2003 | pmid = 12509765 | doi = 10.1038/nrc971 | s2cid = 33707802 }}</ref> 。在2010年代初,[[美国国家癌症研究所]](NCI)、[[宾夕法尼亚大学]]和[[纪念斯隆-凯特琳癌症中心]]使用了第二代CAR来靶向CD19(一种正常B细胞以及B细胞白血病和淋巴瘤中表达的蛋白质)。此研究展现了嵌合抗原受体T细胞疗法的临床疗效,并在许多经过重度预处理的患者中实现了完全缓解癌症<ref name=":5" /> 。而这些试验最终导致了[[美国食品药品监督管理局]](FDA)在2017年首次批准了[[诺华|诺华制药公司]]的司利弗明(tisagenlecleucel,又名Kymriah)与Kite Pharma公司的阿基仑赛(axicabtagene ciloleucel,又名Yescarta)两种基于嵌合抗原受体T细胞的药品。而如今已有六种FDA批准的嵌合抗原受体T细胞疗法<ref>{{Cite journal | author = Center for Biologics Evaluation and Research |date=2022-03-01 |title=Approved Cellular and Gene Therapy Products |url=https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products |journal=FDA |language=en}}</ref>。 |
在21世纪初,科学家向第一代嵌合抗原受体T细胞的CD3ζ细胞内区域添加了如CD28或4-1BB的共刺激域,并称其为第二代嵌合抗原受体T细胞。该构造在临床前模型中表现出了更好的持久性以及清除肿瘤的效果<ref>{{cite journal | vauthors = Sadelain M, Rivière I, Brentjens R | title = Targeting tumours with genetically enhanced T lymphocytes | journal = Nature Reviews. Cancer | volume = 3 | issue = 1 | pages = 35–45 | date = January 2003 | pmid = 12509765 | doi = 10.1038/nrc971 | s2cid = 33707802 }}</ref> 。在2010年代初,[[美国国家癌症研究所]](NCI)、[[宾夕法尼亚大学]]和[[纪念斯隆-凯特琳癌症中心]]使用了第二代CAR来靶向CD19(一种正常B细胞以及B细胞白血病和淋巴瘤中表达的蛋白质)。此研究展现了嵌合抗原受体T细胞疗法的临床疗效,并在许多经过重度预处理的患者中实现了完全缓解癌症<ref name=":5" /> 。而这些试验最终导致了[[美国食品药品监督管理局]](FDA)在2017年首次批准了[[诺华|诺华制药公司]]的司利弗明(tisagenlecleucel,又名Kymriah)与Kite Pharma公司的阿基仑赛(axicabtagene ciloleucel,又名Yescarta)两种基于嵌合抗原受体T细胞的药品。而如今已有六种FDA批准的嵌合抗原受体T细胞疗法<ref>{{Cite journal | author = Center for Biologics Evaluation and Research |date=2022-03-01 |title=Approved Cellular and Gene Therapy Products |url=https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products |journal=FDA |language=en}}</ref>。 |
||
==制造及使用过程== |
|||
生产嵌合抗原受体T细胞的第一步是从人体血液中分离T细胞。其一般可通过患者自身(自体)或健康捐献者的血液(异体)制造。 |
|||
不论血液来源,接下来都会通过血细胞分离器进行白细胞分离,并从中收集[[外周血单个核细胞]]<ref>{{cite journal | vauthors = Jin C, Yu D, Hillerdal V, Wallgren A, Karlsson-Parra A, Essand M | title = Allogeneic lymphocyte-licensed DCs expand T cells with improved antitumor activity and resistance to oxidative stress and immunosuppressive factors | journal = Molecular Therapy: Methods & Clinical Development | volume = 1 | pages = 14001 | date = 2014-03-05 | pmid = 26015949 | pmc = 4362340 | doi = 10.1038/mtm.2014.1 }}</ref><ref name=":8">{{Cite book |last1=Li |first1=Nan |last2=Ho |first2=Mitchell |title=Single-Domain Antibodies |date=2022 |chapter=Development of Glypican-2 Targeting Single-Domain Antibody CAR T Cells for Neuroblastoma |chapter-url=https://pubmed.ncbi.nlm.nih.gov/35157288 |series=Methods in Molecular Biology |volume=2446 |pages=451–468 |doi=10.1007/978-1-0716-2075-5_23 |issn=1940-6029 |pmid=35157288|isbn=978-1-0716-2074-8 |s2cid=246813053 }}</ref> 。这些产物将随后被转移至细胞处理中心。在此,特定的T细胞会被细胞因子[[白细胞介素-2|白介素2]](IL-2),抗CD3/CD28抗体,抗CD3抗体等物刺激,以便其能迅速增殖<ref name=":0">{{cite journal | vauthors = Makita S, Yoshimura K, Tobinai K | title = Clinical development of anti-CD19 chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma | journal = Cancer Science | volume = 108 | issue = 6 | pages = 1109–1118 | date = June 2017 | pmid = 28301076 | pmc = 5480083 | doi = 10.1111/cas.13239 }}</ref> <ref name=":8" />。 |
|||
经过扩增的T细胞经过净化后,科学家将通过逆转录[[病毒载体]](通常为[[Γ反轉錄病毒屬|γ-逆转录病毒]]或[[慢病毒属|慢病毒]])向其[[转导]]编有嵌合抗原受体的基因<ref name=":8" />。由于现代技术已可删除部分U3区,这些载体如今非常安全<ref>{{cite journal | vauthors = Jin C, Fotaki G, Ramachandran M, Nilsson B, Essand M, Yu D | title = Safe engineering of CAR T cells for adoptive cell therapy of cancer using long-term episomal gene transfer | journal = EMBO Molecular Medicine | volume = 8 | issue = 7 | pages = 702–711 | date = July 2016 | pmid = 27189167 | pmc = 4931286 | doi = 10.15252/emmm.201505869 }}</ref>。此外,最新的基因编辑工具[[CRISPR|CRISPR/Cas9]]最近也已被用来代替逆转录病毒载体<ref name="Jensen 821–835">{{cite journal | vauthors = Jensen TI, Axelgaard E, Bak RO | title = Therapeutic gene editing in haematological disorders with CRISPR/Cas9 | journal = British Journal of Haematology | volume = 185 | issue = 5 | pages = 821–835 | date = June 2019 | pmid = 30864164 | doi = 10.1111/bjh.15851 | doi-access = free }}</ref>。 |
|||
制造完成后,该细胞将最终被输入患者体内用于治疗。一般患者在此之前将会进行淋巴灭活化[[化学疗法|化疗]]<ref name="Hartmann2017"/>。该过程将通过减少白细胞数量从而减少体内的资源竞争,并由此增加产生的细胞因子从而扩增体内的嵌合抗原受体T细胞<ref>{{cite journal | vauthors = Muranski P, Boni A, Wrzesinski C, Citrin DE, Rosenberg SA, Childs R, Restifo NP | title = Increased intensity lymphodepletion and adoptive immunotherapy--how far can we go? | journal = Nature Clinical Practice. Oncology | volume = 3 | issue = 12 | pages = 668–681 | date = December 2006 | pmid = 17139318 | pmc = 1773008 | doi = 10.1038/ncponc0666 }}</ref>。 |
|||
== 参考文献 == |
== 参考文献 == |
2023年10月11日 (三) 06:22的版本
嵌合抗原受体T细胞(英文:chimeric antigen receptor T cells, 缩写:CAR T cells),是一种通过基因改造从而获得靶向特定抗原能力的T细胞。这些细胞之所谓”嵌合",是因为该细胞的受体集识别抗原功能与T细胞活化功能于一体。
该细胞通常被用于嵌合抗原受体T细胞疗法(又名嵌合抗原受体T免疫疗法),即通过改造T细胞从而使其可以识别并有效地摧毁癌细胞来治疗癌症。科学家们会先从人体内提取T细胞,通过基因改造使其拥有嵌合抗原受体,并最终将其输入患者体内以攻击他们的肿瘤[1]。
在嵌合抗原受体T细胞疗法中,原始的T细胞可以来源于患者本人(自体)或他人(异体)的血液。从人体中分离T细胞后,科学家们会以经过改造的慢病毒为载体对其进行基因改造,从而使其表达特定的嵌合抗原受体。该通过改造的受体则只会针对肿瘤细胞表面的抗原而无视健康的细胞,从而保证安全性[2]。
在患者体内,当嵌合抗原受体T细胞表面的受体于目标抗原接触时,其会与之结合并被激活,同时通过自身的增殖,增加其自身的细胞毒素,以及分泌因子(细胞因子、白细胞介素、以及生长因子)等方式来摧毁癌细胞[3][4]。
此外,嵌合抗原受体T细胞的表面还可携带CD4或CD8两种辅助受体,从而使之变为具有不同细胞毒素的CD4+ T细胞或CD8+ T细胞。而且由于该两种细胞的细胞毒素具有互相效应,在治疗中采用1:1的细胞类型比例可提供协同对抗肿瘤的效果[5]。
嵌合抗原受体T细胞疗法有一定副作用,包括细胞因子释放综合症、神经毒性、攻击一些拥有目标抗原的正常细胞等[3][6]。并且由于目前此疗法相对较新,关于其包括患者长期生存以及女性患者可能出现的妊娠并发症的长期效果数据相对较少[7]。
相关历史
1987年,日本的桑名义久(Yoshihisa Kuwana)等人在藤田医科大学和协和药品工业株式会社首次描述了含有抗体和T细胞受体的嵌合受体[8]。1989年,以色列的吉迪恩·格罗斯(Gideon Gross)与泽利格·艾沙尔 (Zelig Eshhar)[9][10]在魏茨曼科学研究学院也独立地进行了类似研究[11] 。这些早期的研究集成了抗体与多种抗原结合的能力于TCR-α或TCR-β蛋白的恒定区,并称其为“T体”(T-bodies)[12]。
1991年,加利福尼亚大学旧金山分校的阿瑟·韦斯(Arthur Weiss)证实了包含CD3ζ胞内信号域的嵌合受体可以激活T细胞信号传导[13] 。这项研究促使了将CD3ζ胞内域与类似抗体的胞外域(通常是单链抗体域)以及如CD4受体的蛋白质结合起来。该细胞随后被称为第一代嵌合抗原受体T细胞[14][15]。
第一代嵌合抗原受体T细胞包含了CD4胞外域和CD3ζ胞内域,并由生物技术公司Cell Genesys在1990年代中期展开该细胞的第一项临床试验。该试验尝试使移植的T细胞靶向HIV细胞,但最终结果并没有呈现出任何临床改善[14] 。其它类似的早期使用第一代嵌合抗原受体T细胞来靶向实体肿瘤的临床试验均未保证移植的T细胞的长期持久性,也并没有显著地缓解癌症[16]。
在21世纪初,科学家向第一代嵌合抗原受体T细胞的CD3ζ细胞内区域添加了如CD28或4-1BB的共刺激域,并称其为第二代嵌合抗原受体T细胞。该构造在临床前模型中表现出了更好的持久性以及清除肿瘤的效果[17] 。在2010年代初,美国国家癌症研究所(NCI)、宾夕法尼亚大学和纪念斯隆-凯特琳癌症中心使用了第二代CAR来靶向CD19(一种正常B细胞以及B细胞白血病和淋巴瘤中表达的蛋白质)。此研究展现了嵌合抗原受体T细胞疗法的临床疗效,并在许多经过重度预处理的患者中实现了完全缓解癌症[16] 。而这些试验最终导致了美国食品药品监督管理局(FDA)在2017年首次批准了诺华制药公司的司利弗明(tisagenlecleucel,又名Kymriah)与Kite Pharma公司的阿基仑赛(axicabtagene ciloleucel,又名Yescarta)两种基于嵌合抗原受体T细胞的药品。而如今已有六种FDA批准的嵌合抗原受体T细胞疗法[18]。
制造及使用过程
生产嵌合抗原受体T细胞的第一步是从人体血液中分离T细胞。其一般可通过患者自身(自体)或健康捐献者的血液(异体)制造。
不论血液来源,接下来都会通过血细胞分离器进行白细胞分离,并从中收集外周血单个核细胞[19][20] 。这些产物将随后被转移至细胞处理中心。在此,特定的T细胞会被细胞因子白介素2(IL-2),抗CD3/CD28抗体,抗CD3抗体等物刺激,以便其能迅速增殖[21] [20]。
经过扩增的T细胞经过净化后,科学家将通过逆转录病毒载体(通常为γ-逆转录病毒或慢病毒)向其转导编有嵌合抗原受体的基因[20]。由于现代技术已可删除部分U3区,这些载体如今非常安全[22]。此外,最新的基因编辑工具CRISPR/Cas9最近也已被用来代替逆转录病毒载体[23]。
制造完成后,该细胞将最终被输入患者体内用于治疗。一般患者在此之前将会进行淋巴灭活化化疗[3]。该过程将通过减少白细胞数量从而减少体内的资源竞争,并由此增加产生的细胞因子从而扩增体内的嵌合抗原受体T细胞[24]。
参考文献
- ^ Fox, Maggie. New Gene Therapy for Cancer Offers Hope to Those With No Options Left. NBC News. July 12, 2017 [2019-05-03]. (原始内容存档于2019-05-23).
- ^ Srivastava S, Riddell SR. Engineering CAR-T cells: Design concepts. Trends in Immunology. August 2015, 36 (8): 494–502. PMC 4746114 . PMID 26169254. doi:10.1016/j.it.2015.06.004.
- ^ 3.0 3.1 3.2 Hartmann J, Schüßler-Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Molecular Medicine. September 2017, 9 (9): 1183–1197. PMC 5582407 . PMID 28765140. doi:10.15252/emmm.201607485.
- ^ Tang XJ, Sun XY, Huang KM, Zhang L, Yang ZS, Zou DD, et al. Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy. Oncotarget. December 2015, 6 (42): 44179–44190. PMC 4792550 . PMID 26496034. doi:10.18632/oncotarget.6175.
- ^ Zhang H, Zhao P, Huang H. Engineering better chimeric antigen receptor T cells. Experimental Hematology & Oncology. December 2020, 9 (1): 34. PMC 7709221 . PMID 33292660. doi:10.1186/s40164-020-00190-2.
- ^ Bupha-Intr O, Haeusler G, Chee L, Thursky K, Slavin M, Teh B. CAR-T cell therapy and infection: a review. Expert Review of Anti-Infective Therapy. June 2021, 19 (6): 749–758. PMID 33249873. S2CID 227235627. doi:10.1080/14787210.2021.1855143.
- ^ Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ. Toxicity and management in CAR T-cell therapy. Molecular Therapy: Oncolytics. 2016, 3: 16011. PMC 5008265 . PMID 27626062. doi:10.1038/mto.2016.11.
- ^ Kuwana Y, Asakura Y, Utsunomiya N, Nakanishi M, Arata Y, Itoh S, et al. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochemical and Biophysical Research Communications. December 1987, 149 (3): 960–968. PMID 3122749. doi:10.1016/0006-291x(87)90502-x.
- ^ Gross G, Gorochov G, Waks T, Eshhar Z. Generation of effector T cells expressing chimeric T cell receptor with antibody type-specificity. Transplantation Proceedings. February 1989, 21 (1 Pt 1): 127–130. PMID 2784887.
- ^ Rosenbaum L. Tragedy, Perseverance, and Chance - The Story of CAR-T Therapy. The New England Journal of Medicine. October 2017, 377 (14): 1313–1315. PMID 28902570. doi:10.1056/NEJMp1711886.
- ^ Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proceedings of the National Academy of Sciences of the United States of America. December 1989, 86 (24): 10024–10028. Bibcode:1989PNAS...8610024G. JSTOR 34790. PMC 298636 . PMID 2513569. doi:10.1073/pnas.86.24.10024 .
- ^ Eshhar Z, Bach N, Fitzer-Attas CJ, Gross G, Lustgarten J, Waks T, Schindler DG. The T-body approach: potential for cancer immunotherapy. Springer Seminars in Immunopathology. 1996, 18 (2): 199–209. PMID 8908700. S2CID 19872173. doi:10.1007/BF00820666.
- ^ Irving BA, Weiss A. The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell. March 1991, 64 (5): 891–901. PMID 1705867. S2CID 23466990. doi:10.1016/0092-8674(91)90314-o.
- ^ 14.0 14.1 Hege KM, Roberts MR. T-cell gene therapy. Current Opinion in Biotechnology. December 1996, 7 (6): 629–634. PMID 8939644. doi:10.1016/s0958-1669(96)80074-7.
- ^ June CH, Sadelain M. Chimeric Antigen Receptor Therapy. The New England Journal of Medicine. July 2018, 379 (1): 64–73. PMC 7433347 . PMID 29972754. doi:10.1056/NEJMra1706169.
- ^ 16.0 16.1 Braendstrup P, Levine BL, Ruella M. The long road to the first FDA-approved gene therapy: chimeric antigen receptor T cells targeting CD19. Cytotherapy. February 2020, 22 (2): 57–69. PMC 7036015 . PMID 32014447. doi:10.1016/j.jcyt.2019.12.004.
- ^ Sadelain M, Rivière I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Nature Reviews. Cancer. January 2003, 3 (1): 35–45. PMID 12509765. S2CID 33707802. doi:10.1038/nrc971.
- ^ Center for Biologics Evaluation and Research. Approved Cellular and Gene Therapy Products. FDA. 2022-03-01 (英语).
- ^ Jin C, Yu D, Hillerdal V, Wallgren A, Karlsson-Parra A, Essand M. Allogeneic lymphocyte-licensed DCs expand T cells with improved antitumor activity and resistance to oxidative stress and immunosuppressive factors. Molecular Therapy: Methods & Clinical Development. 2014-03-05, 1: 14001. PMC 4362340 . PMID 26015949. doi:10.1038/mtm.2014.1.
- ^ 20.0 20.1 20.2 Li, Nan; Ho, Mitchell. Development of Glypican-2 Targeting Single-Domain Antibody CAR T Cells for Neuroblastoma. Single-Domain Antibodies. Methods in Molecular Biology 2446. 2022: 451–468. ISBN 978-1-0716-2074-8. ISSN 1940-6029. PMID 35157288. S2CID 246813053. doi:10.1007/978-1-0716-2075-5_23.
- ^ Makita S, Yoshimura K, Tobinai K. Clinical development of anti-CD19 chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma. Cancer Science. June 2017, 108 (6): 1109–1118. PMC 5480083 . PMID 28301076. doi:10.1111/cas.13239.
- ^ Jin C, Fotaki G, Ramachandran M, Nilsson B, Essand M, Yu D. Safe engineering of CAR T cells for adoptive cell therapy of cancer using long-term episomal gene transfer. EMBO Molecular Medicine. July 2016, 8 (7): 702–711. PMC 4931286 . PMID 27189167. doi:10.15252/emmm.201505869.
- ^ Jensen TI, Axelgaard E, Bak RO. Therapeutic gene editing in haematological disorders with CRISPR/Cas9. British Journal of Haematology. June 2019, 185 (5): 821–835. PMID 30864164. doi:10.1111/bjh.15851 .
- ^ Muranski P, Boni A, Wrzesinski C, Citrin DE, Rosenberg SA, Childs R, Restifo NP. Increased intensity lymphodepletion and adoptive immunotherapy--how far can we go?. Nature Clinical Practice. Oncology. December 2006, 3 (12): 668–681. PMC 1773008 . PMID 17139318. doi:10.1038/ncponc0666.