投影

维基百科,自由的百科全书
跳转至: 导航搜索
线性代数
\mathbf{A} = \begin{bmatrix}
1 & 2 \\
3 & 4 \end{bmatrix}
向量 · 矩阵  · 行列式  · 线性空间
变换 P 是在线 m 上的正交投影。

线性代数泛函分析中,投影是从向量空间映射到自身的一种线性变换,是日常生活中“平行投影”概念的形式化和一般化。同现实中阳光将事物投影到地面上一样,投影变换将整个向量空间映射到它的其中一个子空间,并且在这个子空间中是恒等变换[1]

定义[编辑]

投影的严格定义是:一个从向量空间V射到它自身的线性变换 P 是投影,当且仅当P^2 = P。另外一个定义则较为直观:P 是投影,当且仅当存在V的一个子空间W,使得 P 将所有V中的元素都映射到W中,而且 PW上是恒等变换。用数学的语言描述,就是:

\exists W,使得\forall u \in V, P(u) \in W,并且\forall u \in W, P(u)= u

简单例子[编辑]

在现实生活中,阳光在地面上留下各种影子。这就是投影变换最直白的例子。可以理想化地假设阳光都是沿着同一个方向(比如说垂直于地面的角度)照射而来,大地是严格的平面,那么,对于任意一个物体(比如说一只正在飞行的鸟),它的位置可以用向量 (x, y, z) 来表示,而这只鸟在阳光下对应着一个影子,也就是 (x, y, 0)。这样的一个变换就是一个投影变换。它将三维空间中的向量 (x, y, z) 到映射到向量 (x, y, 0) 。这是在 x-y 平面上的投影。这个变换可以用矩阵表示为

 P = \begin{bmatrix} 1 & 0 & 0 \\  0 & 1 & 0 \\  0 & 0 & 0 \end{bmatrix}.

因为对任意一个向量 (x, y, z) ,这个矩阵的作用是:

 P \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix}
x \\ y \\  0 \end{pmatrix}

注意到如果一个向量原来就是表示地面上的一点的话(也就是说它的z分量等于0),那么经过变换 P 后不会有改变。也就是说这个变换在子空间 x-y 平面上是恒等变换,这证明了 P 的确是一个投影。

另外,

 P^2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = P \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ y \\  0 \end{pmatrix};

所以 P = P2,这也证明 P 的确是投影。

基本性质[编辑]

变换 T 是沿着 k 方向到直线 m 上的投影。T 的像空间是 m 而零空间是 k

这里假定投影所在的向量空间V是有限维的(因此不需要考虑如投影的连续性之类的问题)。假设子空间UW分别为 P 的像空间与零空间(也叫做核)。那么按照定义,有如下的基本性质:

  1. P 在像空间U上是恒等变换: \forall v \in U, \quad P(v) = v
  2. 整个向量空间可以分解成子空间UW直和 V =  U \oplus W。也就是说,空间里的每一个向量v,都可以以唯一的方式写成两个向量uw的和: v =  u + w,并且满足 u \in  U  w \in  W 。事实上,每一个向量v都可以写成v = P(v) + \left( v - P(v) \right)P(v)显然在像空间中,而另一方面P \left( v - P(v) \right) =  P(v) - P^2(v) = 0,所以v - P(v) 在零空间中。

抽象代数的术语来说,投影 P幂等的线性变换(P2 = P)。因此它的极小多项式X^2-X=X(X-1)。因式分解后可以看到,这个多项式只有相异的单根(没有多重根),因此 P可对角化矩阵。极小多项式也显示出了投影的特性: 像空间与零空间分别是是对应于特征值1和0的特征空间,并给出了整个空间的一个直和分解。

正如日常生活中阳光沿着一定的方向将影子投射到地面上,一般的投影变换也可以称为是沿着WU上的投影。由于向量空间分解成直和的方式一般不是唯一的(阳光可以顺着不同的方向照射),给定一个子空间 V(地面),一般的说有很多到V 的投影(沿不同的W)。

正交投影[编辑]

如果向量空间被赋予了内积,那么就可以定义正交和其它相关的概念(比如线性算子的自伴随性)了。在内积空间(赋予了内积的向量空间)中,有正交投影的概念。具体来说,正交投影是指像空间U和零空间W相互正交子空间的投影。也就是说,任意u \in Uw \in W,它们的内积(u|w)都等于0。 一个投影是正交投影,当且仅当它是自伴随的变换,这意味着正交投影的矩阵有特殊的性质。如果投影是在实向量空间中,那么它对应的矩阵是对称矩阵:  P = P^T。如果投影是在虚向量空间中,那么它的矩阵则是埃尔米特矩阵: P = P^*。实际上,如果投影  P 是自伴算子,那么

\forall u = P(v) \in U, \quad w \in W,
(u|w) = \left( P(v) | w \right) = \left( v | P^*(w) \right) P^* 表示  P 的伴随算子)(内积符号左右同乘以一个正交矩阵P不改变结果:因为u|v=u*v,所以Pu|Pv=(Pu)*Pv=u*P*Pv=u*v=u|v)
 =  \left( v | P(w) \right) = 0

所以  P 是正交投影。反过来如果  P 是正交投影,那么 \forall u = P(v) \in U, \, w \in W, \quad (u|w) = 0

然而 \forall v \in V, \, v - P(v) \in W,所以 \forall v_1, \, v_2 \in V,
  \begin{align}
  0 &= \left( P(v_1) |(v_2 - P(v_2))\right)\\
  &= \left( v_1 | (P^* - P^* P)(v_2) \right)
  \end{align}

鉴于  v_1, \, v_2 是任取的,必然有  P^* - P^* P = 0。所以  P^* = P^* P 是一个自伴算子,因此  P 也是自伴算子。

例子[编辑]

正交投影的最简单的情况是到(过原点)直线上的正交投影。如果 u 是这条直线的单位方向向量,则投影给出为

 P_u = u u^*. \,

这个算子保留 u 不变( P_u (u)= u u^* u = u \| u \|^2 = u),并且它作用在所有正交于 u 的向量上都是0(如果(u|v) = 0 ,那么 P_u (v)= u u^* v = u (u|v) = 0 ),证明它的确是到包含 u 的直线上的正交投影[2]

这个公式可以推广至到在任意维的子空间上的正交投影。设 u1, …, uk 是子空间 U 的一组正交基,并设 A 为一个n×k 的矩阵,它的列向量是 u1, …, uk。那么投影:

 P_A = A A^T. \, [3]

也是正交的。矩阵 AT 是在 U 的正交补变为零的偏等距同构,而 A 是把 U 嵌入底层向量空间的等距同构。PA 的值域因此是 A 的“终空间”(final space)。ATA 是在 U 上的恒等算子也是明显的。

正交条件也可以去除。如果 u1, …, uk 是(不必须正交)基,而 A 是有这些向量作为列的矩阵,则投影是

P_A = A (A^T A)^{-1} A^T \, [4]

矩阵 AT 仍把 U 嵌入到低层向量空间中但一般不再是等距的。矩阵 (ATA)−1 是恢复规范的“规范化因子”。例如,秩-1 算子 uuT 不是投影,如果 ||u|| ≠ 1。在除以 uTu = \|u\|2 之后,我们得获得了到 u 所生成的子空间的投影 u(uTu)−1uT

所有这些公式对于复数内积空间也成立,假如用共轭转置替代转置。

斜投影[编辑]

术语斜投影有时用来提及非正交投影。这些投影也用来在二维绘图中表示空间图形(参见斜投影),尽管不如正交投影常用。

斜投影用它们的值域和零空间来定义。有给定值域和零空间的投影的矩阵表示的公式可如下这样找到。设向量 u1, …, uk 形成了投影的值域的基,并把这些向量组合到 n×k 矩阵 A 中。值域和零空间是互补空间,所以零空间有维度 n − k。它推出零空间的正交补有维度 k。设 v1, …, vk 形成这个投影的零空间的正交补的基,并把这些向量组合到矩阵 B 中。则投影定义为

 P = A (B^T A)^{-1} B^T \,

这个表达式一般化上面给出的正交投影公式。[5]

在赋范向量空间上的投影[编辑]

当底层向量空间 X 是(不必需有限维)赋范向量空间,需要考虑无关于有限维情况的分析问题,假定现在 X巴拿赫空间

上面讨论的多数代数概念转移到这个上下文后幸存下来了。给定的 X 的直和分解成补子空间仍指定一个投影,反之亦然。如果 X 是直和 X = UV,则定义自 P(u + v) = u 的算子仍是有值域 U 和核 V 的投影。明显的也 P2 = P。反过来说,如果 P 是在 X 上的投影,就是说 P2 = P,则很容易验证 (IP)2 = (IP)。换句话说,(IP) 也是投影。关系 I = P + (IP) 蕴涵了 X 是直和 Ran(P) ⊕ Ran(IP)。

但是相对于有限维情况,投影一般不必须是连续的。如果 X 的子空间 U 在规范拓扑下不闭合,则到 U 上的投影是不连续的。换句话说,连续投影 P 的值域一定是闭合子空间。进一步的,连续投影(事实上,一般的连续线性算子)的核是闭合的。所以连续投影 PX 分解成两个互补的闭合子空间: X = Ran(P) ⊕ Ker(P) = Ran(P) ⊕ Ran(IP)。

反命题在有额外假定条件下也成立。假设 UX 的闭合子空间。如果存在一个闭合子空间 V 使得 X = UV,则有值域 U 和核 V 的投影 P 是连续的。这是从闭合图定理推出的。假定 xnxPxny。需要证明 Px = y。因为 U 是闭合的且 {Pxn} ⊂ U, y 位于 U 中,就是说 Py = y。还有 xnPxn = (IP)xnxy。因为 V 是闭合的且 {(IP)xn} ⊂ V,我们有了 xyV,就是说 P(xy) = PxPy = Pxy = 0,这证明了这个断言。

上述论证利用 UV 都是闭合的假定。一般的说,给定一个闭合子空间 U, 不需要存在一个互补的闭合子空间 V,尽管对于希尔伯特空间总是可以采取正交补得到。对于巴拿赫空间,一维子空间总是有闭合的补子空间。这是 哈恩-巴拿赫定理的直接推论。设 Uu 的线性扩张。通过哈恩-巴拿赫定理,存在一个有界线性泛函 φ,使得 φ(u) = 1。算子 P(x) = φ(x)u 满足 P2 = P,就是说它是个投影。φ 的有界性蕴涵了 P 的连续性,因此 Ker(P) = Ran(IP) 是 U 的闭合补子空间。

参见[编辑]

注解[编辑]

  1. ^ Meyer, pp 386+387
  2. ^ Meyer, p. 431
  3. ^ Meyer, equation (5.13.4)
  4. ^ Meyer, equation (5.13.3)
  5. ^ Meyer, equation (7.10.39)

引用[编辑]