# 溫伯格角

## 温伯格角的由来与定义

${\displaystyle \tan \theta _{W}={\frac {g'}{g}}}$

${\displaystyle Z_{\mu }=({g^{2}}+{g'^{2}})^{-1/2}(gA_{\mu }^{3}+g'B_{\mu })}$
${\displaystyle A_{\mu }=({g^{2}}+{g'^{2}})^{-1/2}(-g'A_{\mu }^{3}+gB_{\mu })}$.

${\displaystyle {\begin{pmatrix}A\\Z\end{pmatrix}}={\begin{pmatrix}\cos \theta _{W}&\sin \theta _{W}\\-\sin \theta _{W}&\cos \theta _{W}\end{pmatrix}}{\begin{pmatrix}B\\W\end{pmatrix}}}$

${\displaystyle \cos \theta _{W}={\frac {m_{W}}{m_{Z}}}}$

## 温伯格角的测量值

sin2θW = 0.2397 ± 0.0013

## 參考文獻

1. ^ S.L. Glashow. Partial-symmetries of weak interactions. Nuclear Physics. 1961, 22 (4): 579–588. Bibcode:1961NucPh..22..579G. doi:10.1016/0029-5582(61)90469-2.
2. S. Weinberg. A Model of Leptons. Physical Review Letters. 1967, 19 (21): 1264–1266. Bibcode:1967PhRvL..19.1264W. doi:10.1103/PhysRevLett.19.1264.
3. ^ A. Salam. N. Svartholm , 编. Elementary Particle Physics: Relativistic Groups and Analyticity. Eighth Nobel Symposium. Stockholm: Almquvist and Wiksell: 367. 1968.
4. ^ L. B. Okun. Leptons and Quarks. North-Holland Physics Publishing. 1982: 214. ISBN 0-444-86924-7.