跳转到内容

肢解國際象棋盤問題

维基百科,自由的百科全书
(重定向自肢解西洋棋盤問題
abcdefgh
8
h8 black cross
a1 black cross
8
77
66
55
44
33
22
11
abcdefgh
肢解國際象棋盤問題
一個二格骨牌

肢解國際象棋盤問題(英語:mutilated chessboard problem)屬於平鋪拼圖問題英语Tiling puzzle,最早是由Max Black英语Max Black在1946年的《Critical Thinking》中提出。後來數學家所羅門·格倫布(1954年)及馬丁·加德納(在雜誌《科學人》中的專欄《Mathematical Games》中)都有討論到此問題。問題:「假設一個標準的8x8格國際象棋棋盤,移除對角的2個方塊,餘下62個方塊。可不可以用31個2x1格骨牌來蓋上餘下方塊呢?」

大部份討論此問題的文獻是在概念上說明此問題[1],電腦科學家约翰·麦卡锡認為這問題對於自動證明系統而言是很難的問題[2]。若使用归结系統,其解的困難度是指數等級[3]

解法

[编辑]
肢解國際象棋盤問題的例子
肢解國際象棋盤問題的例子,移除了左上和右下的白格,棋盤中間二個黑色的方格無法用骨牌填滿,但不容易注意到

肢解國際象棋盤問題是無解的。國際象棋盤上的2x1格骨牌一定會佔據一個白色方格及一個黑色方格,因此被骨牌填滿的位置,白色方格及黑色方格的個數相同。在肢解國際象棋盤問題中,若移除的二個是白色方格,有32個黑色方格及30個白色方格要填滿,兩者數量不同,無法用2x1格骨牌填满。若移除的二個是黑色方格,有30個黑色方格及32個白色方格要填滿,還是無法用2x1格骨牌填满[4]

高莫利定理

[编辑]

只要國際象棋盤上移除二個同色的方格,相同的方式可以證明,移除方格後的棋盤無法用2x1格骨牌填滿。不過若填除的是二個不同顏色的方格,一定可以用2x1格骨牌填滿,這個結果稱為高莫利定理(Gomory's theorem)[5],得名自數學家拉爾夫·愛德華·高莫利英语Ralph E. Gomory,他在1973年提出的證明[6]。高莫利定理可以用棋盤組成格子圖英语grid graph哈密顿图來證明,移去二個不同色的方格會將哈密顿图切成二部份,每個部份的黑色方格及白色方格都一樣多,兩部份都可以用2x1格骨牌填滿。

參見

[编辑]

引用來源

[编辑]
  1. ^ Andrews, Peter B.; Bishop, Matthew, On Sets, Types, Fixed Points, and Checkerboards, Theorem Proving With Analytic Tableaux and Related Methods: 5th International Workshop, Tableaux '96, Terrasini, Palermo, Italy, 15-17th, 1996, Proceedings, Lecture Notes in Computer Science, Springer-Verlag, 1996, most treatments of the problem in the literature solve it in the conceptual sense, but do not actually provide proofs of the theorem in either of McCarthy's original formulations. 
  2. ^ Arthan, R. D., The Mutilated Chessboard Theorem in Z (PDF), 2005 [2007-05-06], (原始内容 (PDF)存档于2017-12-14), The mutilated chessboard theorem was proposed over 40 years ago by John McCarthy as a "tough nut to crack" for automated reasoning. 
  3. ^ Alekhnovich, Michael, Mutilated chessboard problem is exponentially hard for resolution, Theoretical Computer Science, 2004, 310 (1-3): 513–525, doi:10.1016/S0304-3975(03)00395-5 .
  4. ^ McCarthy, John, Creative Solutions to Problems, AISB Workshop on Artificial Intelligence and Creativity, 1999 [2007-04-27], (原始内容存档于2019-04-05) 
  5. ^ Watkins, John J., Across the board: the mathematics of chessboard problems, Princeton University Press: 12–14, 2004, ISBN 978-0-691-11503-0 .
  6. ^ According to Mendelsohn, the original publication is in Honsberger's book. Mendelsohn, N. S., Tiling with dominoes, The College Mathematics Journal (Mathematical Association of America), 2004, 35 (2): 115–120, JSTOR 4146865, doi:10.2307/4146865 ; Honsberger, R., Mathematical Gems I, Mathematical Association of America, 1973 .

參考資料

[编辑]

外部連結

[编辑]