跳转到内容

吾鄉-朱加猜想

维基百科,自由的百科全书

數論中與伯努利數有關的的吾鄉—朱加猜想猜測:質數當且僅當

猜想的上述形式是吾鄉孝視在1990年提出;另一個等價的形式是朱塞佩·朱加(Giuseppe Giuga)在1950年提出:質數當且僅當

Giuga指出,可能的反例n是一個卡邁克爾數,可被至少8個不同的素數因子整除。 Giuga驗證了n> 101000的猜想。 1985年時,Edmondo Bedocchi已計算到n> 101700。 1996年時,Borwein和其他人已計算到n> 1013800Laerte Sorini,最後,在2001年的工作中表明,對該猜想的反例必須為n> 1036067,這是Bedocchi假設Giuga證明其猜想的極限。

參考資料

[编辑]
  • Agoh T. "On Giuga's conjecture" Manuscripta Math., 87(4), 501-510 (1995).
  • Bedocchi E. "Nota ad una congettura sui numeri primi", Riv. Mat. Univ. Parma, (4) 11 (1985), 229-236.
  • Borwein D., Borwein J. M., Borwein P. B., and Girgensohn R. "Giuga's Conjecture on Primality", Amer. Math. Monthly, 103, 40-50, (1996). pdf
  • Borwein J.M., Skerritt M. and Maitland C. "Computation of a lower bound to Giuga's primality conjecture." Integers 13 (2013).
  • Giuga G. "Su una presumibile proprietà caratteristica dei numeri primi", Ist. Lombardo Sci. Lett. Rend. A, 83, 511-528 (1950).
  • Sorini L. "Un Metodo Euristico per la Soluzione della Congettura di Giuga", Facoltà di Economia, Università degli Studi di Urbino Carlo Bo, Quaderni di Economia, Matematica e Statistica, n. 68, Ottobre (2001) ISSN 1720-9668.